
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4388506/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Dissipation of Quantum Turbulence in the Zero Temperature Limit. Physical Review Letters, 2007, 99, 265302.	7.8	145
2	Observation of capillary turbulence on the water surface in a wide range of frequencies. Europhysics Letters, 2002, 58, 510-516.	2.0	52
3	Quasiadiabatic Decay of Capillary Turbulence on the Charged Surface of Liquid Hydrogen. Physical Review Letters, 2004, 93, 074501.	7.8	49
4	Nonlinear Generation of Vorticity by Surface Waves. Physical Review Letters, 2016, 116, 054501.	7.8	49
5	Negative charges in liquid hydrogen and deuterium. Journal of Low Temperature Physics, 1992, 89, 457-463.	1.4	44
6	Viscous magnetoresistance of correlated electron liquids. Physical Review B, 2017, 95, .	3.2	34
7	Stress-Induced Melting and Surface Instability of ⁴ He Crystals. Europhysics Letters, 1992, 20, 707-713.	2.0	31
8	Excitation and Detection of Nonlinear Waves on a Charged Surface of Liquid Hydrogen. Instruments and Experimental Techniques, 2002, 45, 758-763.	0.5	28
9	Generation of vortices by gravity waves on a water surface. JETP Letters, 2016, 104, 702-708.	1.4	26
10	The turbulence of capillary waves on the surface of liquid hydrogen. Journal of Experimental and Theoretical Physics, 2002, 95, 447-454.	0.9	25
11	Capillary turbulence at the surface of liquid hydrogen. JETP Letters, 2001, 73, 398-400.	1.4	22
12	Generation of a vortex flow by waves on the surface of a liquid. JETP Letters, 2015, 102, 432-436.	1.4	21
13	Faraday waves and vortices on the surface of superfluid He II. JETP Letters, 2017, 106, 252-257.	1.4	19
14	Decay of Turbulence Generated by Spin-Down to Rest in SuperfluidÂ4He. Journal of Low Temperature Physics, 2008, 153, 127-139.	1.4	17
15	Static phenomena at the charged surface of liquid hydrogen. Low Temperature Physics, 1999, 25, 242-249.	0.6	16
16	Measurement of the boundary frequency of the inertial interval of capillary wave turbulence at the surface of liquid hydrogen. JETP Letters, 2001, 74, 583-585.	1.4	16
17	Neutron Studies of Impurity Gels of Heavy Water and Deuterium in Superfluid He-II. Journal of Low Temperature Physics, 2008, 150, 206-211.	1.4	16
18	Stationary soliton on a charged surface of liquid helium and hydrogen films. JETP Letters, 1997, 65, 572-578.	1.4	15

#	Article	IF	CITATIONS
19	Large-Scale Coherent Vortex Formation in Two-Dimensional Turbulence. JETP Letters, 2018, 107, 157-162.	1.4	14
20	A Technique for Registering Wave and Vortex Motions on a Liquid Surface. Instruments and Experimental Techniques, 2018, 61, 757-760.	0.5	13
21	Detection of Vortices in Superfluid 4He in the T=0 Limit Using Charged Vortex Rings. Journal of Low Temperature Physics, 2007, 146, 511-523.	1.4	12
22	Bidirectional energy cascade in surface capillary waves. Physical Review E, 2015, 91, 023021.	2.1	12
23	Formation and decay of eddy currents generated by crossed surface waves. Physical Review Fluids, 2019, 4, .	2.5	12
24	Observation of wave energy accumulation in the turbulent spectrum of capillary waves on the He-II surface under harmonic pumping. JETP Letters, 2010, 91, 271-276.	1.4	11
25	Structural transitions in ice samples at low temperatures and pressures. JETP Letters, 2011, 94, 621-625.	1.4	11
26	Capillary Turbulence on the Surfaces of Quantum Fluids. Progress in Low Temperature Physics, 2009, , 305-349.	0.2	10
27	Formation of an energy cascade in a system of vortices on the surface of water. JETP Letters, 2017, 106, 330-335.	1.4	10
28	Self-organization of neutral particles on the surface of superfluid He II. Low Temperature Physics, 2019, 45, 469-475.	0.6	10
29	Vacancy Assisted Motion of Charges in Quantum Crystals. Journal of Low Temperature Physics, 1998, 111, 545-554.	1.4	9
30	Suppression of high-frequency turbulent oscillations of the fluid surface by additional low-frequency pumping. JETP Letters, 2005, 82, 565-569.	1.4	9
31	Experiments on the Vortex Dynamics in Superfluid 4He with no Normal Component. Journal of Low Temperature Physics, 2007, 148, 317-321.	1.4	8
32	Capillary turbulence on the surface of normal and superfluid He4. Low Temperature Physics, 2009, 35, 95-99.	0.6	8
33	Evolution of a turbulent cascade on the surface of liquid hydrogen under a change in the spectral characteristic of an exciting force. JETP Letters, 2009, 89, 120-123.	1.4	8
34	Instability on the Free Surface of Superfluid He-II Induced by a Steady Heat Flow in Bulk. Journal of Low Temperature Physics, 2016, 185, 324-338.	1.4	8
35	Shear modes in 2D ion crystals trapped below the surface of superfluid helium. Surface Science, 1996, 361-362, 843-846.	1.9	7
36	Charged Surface of Liquid Hydrogen at Near Zero Gravitation. Journal of Low Temperature Physics, 2000, 119, 343-350.	1.4	7

#	Article	IF	CITATIONS
37	Macroscopic vortices on the surface of superfluid He II. Low Temperature Physics, 2018, 44, 1005-1019.	0.6	7
38	Quasi-adiabatic decay of vortex motion on the water surface. Materials Letters, 2019, 254, 444-447.	2.6	7
39	Linear and nonlinear waves on the charged surface of liquid hydrogen. Low Temperature Physics, 2001, 27, 876-882.	0.6	6
40	Turbulence of second sound waves in superfluid He II. Low Temperature Physics, 2004, 30, 441-445.	0.6	6
41	Experiments on the Dynamics of Vortices in Superfluid 4He with No Normal Component. Journal of Low Temperature Physics, 2006, 145, 143-154.	1.4	6
42	Study of high-frequency edge of turbulent cascade on the surface of He-II. Journal of Physics: Conference Series, 2009, 150, 032001.	0.4	6
43	Experimental Simulation of the Generation of a Vortex Flow on a Water Surface by a Wave Cascade. JETP Letters, 2018, 108, 519-526.	1.4	6
44	Nonstationary Nonlinear Phenomena on the Charged Surface of Liquid Hydrogen. Journal of Low Temperature Physics, 2006, 145, 311-335.	1.4	5
45	Low-frequency subharmonics in the turbulent spectrum on the surface of liquid hydrogen. JETP Letters, 2015, 100, 669-674.	1.4	5
46	Decay instability of gravity-capillary waves on liquid hydrogen surfaces. Low Temperature Physics, 2017, 43, 325-328.	0.6	5
47	How the Vortex Motion of Gravity Waves on the Surface of Water is Formed. Journal of Surface Investigation, 2017, 11, 1225-1231.	0.5	5
48	Vortices on the Surface of Normal He I Generated by the Rayleigh–Bénard Thermogravitational Convection in the Bulk of a Liquid. JETP Letters, 2019, 110, 551-556.	1.4	5
49	Movement of charges in solid deuterium. JETP Letters, 1996, 63, 376-380.	1.4	4
50	Decay of a turbulent cascade of capillary waves at the surface of liquid hydrogen. JETP Letters, 2004, 80, 90-94.	1.4	4
51	Formation and Decay of Capillary Turbulence on the Charged Surface of Liquid Hydrogen. Journal of Low Temperature Physics, 2005, 139, 523-530.	1.4	4
52	Turbulence of Capillary Waves on the Surface of Quantum Liquids. Journal of Low Temperature Physics, 2007, 148, 245-249.	1.4	4
53	Statistics of Capillary Waves on the Surface of Liquid Hydrogen in a Turbulent Regime. Journal of Low Temperature Physics, 2008, 150, 431-434.	1.4	4
54	"Quasi-Planck―spectra of capillary turbulence on the surface of liquid hydrogen. JETP Letters, 2011, 93, 31-34.	1.4	4

#	Article	IF	CITATIONS
55	Kinetic and discrete turbulence on the surface of quantum liquids. Physics-Uspekhi, 2012, 55, 818-825.	2.2	4
56	A method for spatial recording of waves on the surface of a transparent liquid. Instruments and Experimental Techniques, 2013, 56, 731-735.	0.5	4
57	A field-emission source of charges based on nanotubes for low-temperature experiments. Instruments and Experimental Techniques, 2014, 57, 755-759.	0.5	4
58	Formation of low-frequency harmonics on the surface of liquid hydrogen and helium in a turbulent regime. Low Temperature Physics, 2015, 41, 163-168.	0.6	4
59	Capacitance-voltage characteristics of metal-insulator-semiconductor structures (Review article). Low Temperature Physics, 2019, 45, 823-840.	0.6	4
60	Formation and Decay of Vortex Motion on a Liquid Surface (Scientific Summary). JETP Letters, 2020, 111, 549-561.	1.4	4
61	Reconstruction of Charged Hydrogen Surface. Journal of Low Temperature Physics, 1998, 111, 589-595.	1.4	3
62	Nonlinear Waves on the Charged Surface of Liquid Hydrogen. Journal of Low Temperature Physics, 2002, 126, 569-577.	1.4	3
63	Search for New Tool for Production of Ultracold Neutrons. AIP Conference Proceedings, 2006, , .	0.4	3
64	Developed Capillary Turbulence on the Surface ofÂNormal and Superfluid 4He. Journal of Low Temperature Physics, 2008, 150, 426-430.	1.4	3
65	Distribution of the probability of oscillations of the surface of liquid hydrogen in the turbulent regime. JETP Letters, 2008, 88, 19-23.	1.4	3
66	The surface instability of liquid hydrogen and helium. Low Temperature Physics, 2012, 38, 1013-1025.	0.6	3
67	Turbulent capillary cascade near the edge of the inertial range on the surface of a quantum liquid. JETP Letters, 2012, 95, 670-679.	1.4	3
68	Shielding characteristics of water. Low Temperature Physics, 2015, 41, 461-464.	0.6	3
69	Decay of a vortex lattice formed by gravity waves on the water surface. Results in Physics, 2019, 13, 102229.	4.1	3
70	Kelvin-Helmholtz instability forced by the intensive Faraday waves on the free surface of superfluid He-II. Materials Letters, 2019, 238, 226-228.	2.6	3
71	Penetration of a Vortex Lattice into the Bulk of a Liquid. Journal of Surface Investigation, 2020, 14, 751-755.	0.5	3
72	The evolution of vortices on the surface of normal He I. Low Temperature Physics, 2020, 46, 133-138.	0.6	3

#	Article	IF	CITATIONS
73	Stationary nonlinear waves at the surface of a thin liquid layer under inverted gravitation conditions. Low Temperature Physics, 2004, 30, 58-69.	0.6	2
74	Nanotube-based source of charges for experiments with solid helium at low temperatures. Low Temperature Physics, 2015, 41, 567-570.	0.6	2
75	The interaction between injected charges and a vortex flow in normal and superfluid helium near <i>Τ/i>Î. Low Temperature Physics, 2021, 47, 378-382.</i>	0.6	2
76	The formation of Pareto distribution in tracer systems on the water surface. Results in Physics, 2021, 27, 104446.	4.1	2
77	Generation of Vortices by Nonlinear Waves on the Surface of a Viscous Liquid. Physics of Wave Phenomena, 2019, 27, 327-332.	1.1	2
78	Instability and Reconstruction of Thin Liquid Layer Under Inversed Gravitation Conditions. Journal of Low Temperature Physics, 2002, 126, 385-390.	1.4	1
79	Decay of the Turbulent Cascade of Capillary Waves on the Charged Surface of Liquid Hyrdrogen. Journal of Low Temperature Physics, 2005, 138, 519-524.	1.4	1
80	Nonlinear Second Sound Waves in Superfluid Helium in a Resonator. Journal of Low Temperature Physics, 2005, 138, 525-530.	1.4	1
81	Classical capillary turbulence on the surface of quantum liquid He-II. Low Temperature Physics, 2011, 37, 403-407.	0.6	1
82	Wave turbulence on the surface of liquid hydrogen in restricted geometry: The influence of the boundary conditions. Low Temperature Physics, 2015, 41, 484-487.	0.6	1
83	Observation of dynamic maximum in a turbulent cascade on the surface of liquid hydrogen. Low Temperature Physics, 2016, 42, 1067-1070.	0.6	1
84	Influence of Helium Atoms Absorption on the Emission Properties of Carbon Nanotubes. Journal of Low Temperature Physics, 2017, 187, 166-171.	1.4	1
85	Modulation Instability of a Gravity Wave and Generation of a Direct Cascade of Vortex Energy on the Surface of Water. Journal of Surface Investigation, 2018, 12, 1298-1303.	0.5	1
86	Energy transfer to the low-frequency region of the turbulence spectrum of gravity waves on superfluid He II surfaces owing to four-wave processes. Low Temperature Physics, 2018, 44, 126-129.	0.6	1
87	Waves on the He-II Surface, Excited by a Heat Flux in the Bulk. Journal of Experimental and Theoretical Physics, 2019, 129, 591-606.	0.9	1
88	Interaction of charges with orthomolecules in solid hydrogen. Physica B: Condensed Matter, 1990, 165-166, 913-914.	2.7	0
89	Experimental investigation of charged liquid hydrogen surface. European Physical Journal D, 1996, 46, 325-326.	0.4	0
90	Charge motion in solid deuterium. European Physical Journal D, 1996, 46, 511-512.	0.4	0

#	Article	IF	CITATIONS
91	Reconstruction of the charged surface of liquid hydrogen. Low Temperature Physics, 1998, 24, 114-118.	0.6	Ο
92	Nanoparticle in a quantum crystal with a narrow vacancy band. Physica B: Condensed Matter, 2000, 280, 146-147.	2.7	0
93	Yuriı̆ Andreevich Osip'yan (on his 70th birthday). Low Temperature Physics, 2001, 27, 162-163.	0.6	0
94	Experimental evidence for the weak turbulence on the surface of liquid hydrogen. Physica B: Condensed Matter, 2003, 329-333, 419-420.	2.7	0
95	Motion of a probe nanoparticle in a quantum crystal with a narrow vacancy band. Low Temperature Physics, 2003, 29, 373-377.	0.6	0
96	Experimental Studies of Decay and Formation of Capillary Turbulence on the Surface of Liquid Hydrogen. AIP Conference Proceedings, 2006, , .	0.4	0
97	Decay of Capillary Turbulence on the Surface of a Semiquantum Liquid. AIP Conference Proceedings, 2006, , .	0.4	0
98	Modification of turbulent cascade on the surface of liquid hydrogen with variation of the spectral characteristic of low frequency excitation. Journal of Physics: Conference Series, 2009, 150, 032011.	0.4	0
99	Fullerit C60 single crystals grown on earth and in space. Bulletin of the Russian Academy of Sciences: Physics, 2011, 75, 1031-1032.	0.6	0
100	Stability and reconstruction of inverse gravity films (Review Article). Low Temperature Physics, 2012, 38, 991-1000.	0.6	0
101	Two different regimes of the turbulent wave cascade decay on the surface of quantum liquids. Journal of Physics: Conference Series, 2012, 400, 012001.	0.4	0
102	Turbulence in the system of capillary waves on the surface of water. Journal of Surface Investigation, 2016, 10, 1060-1066.	0.5	0
103	Formation of Vortex Motion by Capillary Waves on the Surface of Water. Journal of Surface Investigation, 2018, 12, 1117-1123.	0.5	0
104	Observation of a local maximum in the stationary turbulent spectrum of capillary waves on the surface of liquid hydrogen. Low Temperature Physics, 2019, 45, 363-366.	0.6	0
105	Procedure for determining the dye solution concentration distribution in laminar water flow in glass channel. Journal of Physics: Conference Series, 2020, 1560, 012044.	0.4	Ο
106	Pareto distribution in the system of polyamide particle clusters on the water surface. Results in Physics, 2021, 29, 104677.	4.1	0
107	Terrestrial development of the experiments on the fullerite C60 crystal growth in microgravity. Nanosystems: Physics, Chemistry, Mathematics, 2018, , 38-40.	0.4	0
108	Influence of Hydrogen Absorbtion on the Emission Properties of Carbon Nanotubes. Journal of Surface Investigation, 2020, 14, 555-557.	0.5	0