
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4388428/publications.pdf Version: 2024-02-01

ROBERT RAIA

#	Article	IF	CITATIONS
1	New insights in establishing the structure-property relations of novel plasmonic nanostructures for clean energy applications. EnergyChem, 2022, 4, 100070.	10.1	13
2	Plasmonic nanocatalysts for visible-NIR light induced hydrogen generation from storage materials. Materials Advances, 2021, 2, 880-906.	2.6	22
3	PdAu Core–Shell Nanostructures as Visible-Light Responsive Plasmonic Photocatalysts. Nanostructure Science and Technology, 2021, , 261-274.	0.1	1
4	Understanding catalytic CO ₂ and CO conversion into methanol using computational fluid dynamics. Faraday Discussions, 2021, 230, 100-123.	1.6	6
5	Bimetallic PdAu Catalysts within Hierarchically Porous Architectures for Aerobic Oxidation of Benzyl Alcohol. Nanomaterials, 2021, 11, 350.	1.9	8
6	Design and application of photocatalysts using porous materials. Catalysis Reviews - Science and Engineering, 2021, 63, 165-233.	5.7	21
7	Rational Design and Application of Covalent Organic Frameworks for Solar Fuel Production. Molecules, 2021, 26, 4181.	1.7	8
8	Thiol Functionalised Supports for Controlled Metal Nanoparticle Formation for Improved C–C Coupling. Chemistry - an Asian Journal, 2021, 16, 3610-3614.	1.7	1
9	Contrasting Structure-Property Relationships in Amorphous, Hierarchical and Microporous Aluminophosphate Catalysts for Claisen-Schmidt Condensation Reactions. Applied Catalysis A: General, 2021, , 118376.	2.2	4
10	Incorporating Metal Organic Frameworks within Microstructured Optical Fibers toward Scalable Photoreactors. Advanced Optical Materials, 2021, 9, 2001421.	3.6	2
11	Butane Isomerization as a Diagnostic Tool in the Rational Design of Solid Acid Catalysts. Catalysts, 2020, 10, 1099.	1.6	10
12	Recent Advances in Photocatalytic CO2 Utilisation Over Multifunctional Metal–Organic Frameworks. Catalysts, 2020, 10, 1176.	1.6	20
13	Single-Site Heterogeneous Catalysts and Photocatalysts for Emerging Applications. ACS Symposium Series, 2020, , 151-188.	0.5	3
14	Cobalt-containing zeolitic imidazole frameworks for C–H activation using visible-light redox photocatalysis. Catalysis Science and Technology, 2020, 10, 7262-7269.	2.1	13
15	The Significance of Metal Coordination in Imidazoleâ€Functionalized Metal–Organic Frameworks for Carbon Dioxide Utilization. Chemistry - A European Journal, 2020, 26, 13606-13610.	1.7	5
16	Exploring the origins of crystallisation kinetics in hierarchical materials using <i>in situ</i> X-ray diffraction and pair distribution function analysis. Physical Chemistry Chemical Physics, 2020, 22, 18860-18867.	1.3	12
17	Designing Multi-Dopant Species in Microporous Architectures to Probe Reaction Pathways in Solid-Acid Catalysis. Frontiers in Chemistry, 2020, 8, 171.	1.8	4
18	Probing the Design Rationale of a Highâ€Performing Faujasitic Zeotype Engineered to have Hierarchical Porosity and Moderated Acidity. Angewandte Chemie, 2020, 132, 19729-19737.	1.6	2

#	Article	IF	CITATIONS
19	Probing the Design Rationale of a Highâ€Performing Faujasitic Zeotype Engineered to have Hierarchical Porosity and Moderated Acidity. Angewandte Chemie - International Edition, 2020, 59, 19561-19569.	7.2	11
20	Combining Photocatalysis and Optical Fiber Technology toward Improved Microreactor Design for Hydrogen Generation with Metallic Nanoparticles. ACS Photonics, 2020, 7, 714-722.	3.2	13
21	Functionalized mesoporous SBA-15 silica: recent trends and catalytic applications. Nanoscale, 2020, 12, 11333-11363.	2.8	193
22	Redox Aluminophosphates: Applying Fundamental Undergraduate Theory To Solve Global Challenges in the Chemical Industry. Journal of Chemical Education, 2019, 96, 2937-2946.	1.1	3
23	Waste not, want not: CO ₂ (re)cycling into block polymers. Chemical Communications, 2019, 55, 7315-7318.	2.2	31
24	Integrated Theoretical and Empirical Studies for Probing Substrate–Framework Interactions in Hierarchical Catalysts. Chemistry - A European Journal, 2019, 25, 9938-9947.	1.7	7
25	The influence of porosity on nanoparticle formation in hierarchical aluminophosphates. Beilstein Journal of Nanotechnology, 2019, 10, 1952-1957.	1.5	4
26	Acid properties of organosiliceous hybrid materials based on pendant (fluoro)aryl-sulfonic groups through a spectroscopic study with probe molecules. Catalysis Science and Technology, 2019, 9, 6308-6317.	2.1	1
27	Hybrid catalysts based on N-heterocyclic carbene anchored on hierarchical zeolites. RSC Advances, 2019, 9, 35336-35344.	1.7	5
28	Hierarchical SAPOâ€34 Architectures with Tailored Acid Sites using Sustainable Sugar Templates. ChemistryOpen, 2018, 7, 297-301.	0.9	19
29	Combining catalysis and computational fluid dynamics towards improved process design for ethanol dehydration. Catalysis Science and Technology, 2018, 8, 6163-6172.	2.1	12
30	Comprehensive Vibrational Spectroscopic Characterization of Nylonâ€6 Precursors for Precise Tracking of the Beckmann Rearrangement. ChemPhysChem, 2018, 19, 3196-3203.	1.0	4
31	Investigating the role of framework topology and accessible active sites in silicoaluminophosphates for modulating acid-catalysis. Catalysis Science and Technology, 2018, 8, 5155-5164.	2.1	16
32	Spectroscopic insights leading to a better understanding of site-isolation in heterogeneous nanocatalysts. Journal of Materials Chemistry A, 2018, 6, 14410-14419.	5.2	2
33	Understanding the Role of Designed Solid Acid Sites in the Lowâ€Temperature Production of <i>ïµ</i> â€Caprolactam. ChemCatChem, 2017, 9, 1897-1900.	1.8	15
34	Mesoporous Silica Scaffolds as Precursor to Drive the Formation of Hierarchical SAPOâ€34 with Tunable Acid Properties. Chemistry - A European Journal, 2017, 23, 9952-9961.	1.7	38
35	Understanding the Role of Molecular Diffusion and Catalytic Selectivity in Liquid-Phase Beckmann Rearrangement. ACS Catalysis, 2017, 7, 2926-2934.	5.5	30
36	Cobalt-platinum heterometallic clusters containing N-heterocyclic carbene ligands. Journal of Organometallic Chemistry, 2017, 849-850, 48-53.	0.8	2

#	Article	IF	CITATIONS
37	A preliminary evaluation of bio-based epoxy resin hardeners for maritime application. Procedia Engineering, 2017, 200, 186-192.	1.2	13
38	Theoretical insights into the nature of synergistic enhancement in bimetallic CoTiAlPO-5 catalysts for ammonia activation. Catalysis Science and Technology, 2017, 7, 3474-3480.	2.1	3
39	The Molecular Design of Active Sites in Nanoporous Materials for Sustainable Catalysis. Molecules, 2017, 22, 2127.	1.7	12
40	Expanding Beyond the Micropore: Catalysis with Hierarchical Architectures. Advanced Science Letters, 2017, 23, 5995-5997.	0.2	4
41	Design of Highly Selective Platinum Nanoparticle Catalysts for the Aerobic Oxidation of KAâ€Oil using Continuousâ€Flow Chemistry. ChemSusChem, 2016, 9, 423-427.	3.6	9
42	Design of Highly Selective Platinum Nanoparticle Catalysts for the Aerobic Oxidation of KA-Oil using Continuous-Flow Chemistry. ChemSusChem, 2016, 9, 418-418.	3.6	0
43	Utilisation of gold nanoparticles on amine-functionalised UiO-66 (NH ₂ -UiO-66) nanocrystals for selective tandem catalytic reactions. Chemical Communications, 2016, 52, 6557-6560.	2.2	59
44	A highly active hydrogen evolution electrocatalyst based on a cobalt–nickel sulfide composite electrode. Journal of Materials Chemistry A, 2016, 4, 9744-9749.	5.2	55
45	Creating Accessible Active Sites in Hierarchical MFI Zeolites for Lowâ€Temperature Acid Catalysis. ChemCatChem, 2016, 8, 3161-3169.	1.8	30
46	Influence of dopant substitution mechanism on catalytic properties within hierarchical architectures. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2016, 472, 20160095.	1.0	5
47	Understanding the molecular basis for the controlled design of ruthenium nanoparticles in microporous aluminophosphates. Molecular Systems Design and Engineering, 2016, 1, 335-344.	1.7	4
48	Spectroscopic investigation into the design of solid–acid catalysts for the low temperature dehydration of ethanol. Physical Chemistry Chemical Physics, 2016, 18, 17303-17310.	1.3	8
49	The effect of crystallinity on photocatalytic performance of Co ₃ O ₄ water-splitting cocatalysts. Physical Chemistry Chemical Physics, 2016, 18, 5172-5178.	1.3	50
50	The curious effects of integrating bimetallic active centres within nanoporous architectures for acid-catalysed transformations. Catalysis Science and Technology, 2016, 6, 2616-2622.	2.1	2
51	Design and control of Lewis acid sites in Sn-substituted microporous architectures. Journal of Materials Chemistry A, 2016, 4, 5706-5712.	5.2	8
52	Frontispiece: Utilizing Benign Oxidants for Selective Aerobic Oxidations Using Heterogenized Platinum Nanoparticle Catalysts. ChemPlusChem, 2015, 80, n/a-n/a.	1.3	0
53	Spectroscopic chemical insights leading to the design of versatile sustainable composites for enhanced marine application. RSC Advances, 2015, 5, 101221-101231.	1.7	0
54	Utilizing Benign Oxidants for Selective Aerobic Oxidations Using Heterogenized Platinum Nanoparticle Catalysts. ChemPlusChem, 2015, 80, 1226-1230.	1.3	3

#	Article	IF	CITATIONS
55	Elucidating Structure–Property Relationships in the Design of Metal Nanoparticle Catalysts for the Activation of Molecular Oxygen. ACS Catalysis, 2015, 5, 3807-3816.	5.5	26
56	Spectroscopic and Computational Insights on Catalytic Synergy in Bimetallic Aluminophosphate Catalysts. Journal of the American Chemical Society, 2015, 137, 8534-8540.	6.6	23
57	Expanding Beyond the Micropore: Active-Site Engineering in Hierarchical Architectures for Beckmann Rearrangement. ACS Catalysis, 2015, 5, 6587-6593.	5.5	41
58	Highly effective design strategy for the heterogenisation of chemo- and enantioselective organocatalysts. Catalysis Science and Technology, 2015, 5, 660-665.	2.1	16
59	Rationalising the role of solid-acid sites in the design of versatile single-site heterogeneous catalysts for targeted acid-catalysed transformations. Chemical Science, 2014, 5, 1810-1819.	3.7	38
60	Tripodal molecules for the promotion of phosphoester hydrolysis. Chemical Communications, 2014, 50, 6217-6220.	2.2	22
61	Predictive design of engineered multifunctional solid catalysts. Chemical Communications, 2014, 50, 5940-5957.	2.2	29
62	Role of Isolated Acid Sites and Influence of Pore Diameter in the Low-Temperature Dehydration of Ethanol. ACS Catalysis, 2014, 4, 4161-4169.	5.5	39
63	Iridium–Bismuth Cluster Complexes Yield Bimetallic Nano-Catalysts for the Direct Oxidation of 3-Picoline to Niacin. ACS Catalysis, 2013, 3, 3106-3110.	5.5	34
64	Investigating site-specific interactions and probing their role in modifying the acid-strength in framework architectures. Physical Chemistry Chemical Physics, 2013, 15, 13288.	1.3	15
65	Complex anion inclusion compounds: flexible anion-exchange materials. Chemical Communications, 2013, 49, 249-251.	2.2	17
66	Heterogenisation of ketonecatalysts within mesoporous supports for asymmetric epoxidation. RSC Advances, 2013, 3, 843-850.	1.7	11
67	Toward Understanding the Catalytic Synergy in the Design of Bimetallic Molecular Sieves for Selective Aerobic Oxidations. Journal of the American Chemical Society, 2013, 135, 2915-2918.	6.6	41
68	Probing the origin of in situ generated nanoparticles as sustainable oxidation catalysts. Dalton Transactions, 2013, 42, 12600.	1.6	10
69	From zeozymes to bio-inspired heterogeneous solids: Evolution of design strategies for sustainable catalysis. Catalysis Today, 2012, 198, 19-34.	2.2	27
70	A HYSCORE investigation of bimetallic titanium–vanadium microporous catalysts: elucidating the nature of the active sites. Chemical Communications, 2012, 48, 8700.	2.2	15
71	Ru _x Pt _y Sn _z cluster-derived nanoparticlecatalysts: spectroscopic investigation into the nature of active multinuclear single sites. Dalton Transactions, 2012, 41, 982-989.	1.6	15
72	Transition Metal versus Heavy Metal Synergy in Selective Catalytic Oxidations. ACS Catalysis, 2012, 2, 2446-2451.	5.5	20

#	Article	IF	CITATIONS
73	Design strategies for engineering selectivity in bio-inspired heterogeneous catalysts. Catalysis Science and Technology, 2011, 1, 517.	2.1	43
74	Spectroscopic investigation into the nature of the active sites for epoxidation reactions using vanadium-based aluminophosphate catalysts. Microporous and Mesoporous Materials, 2011, 138, 167-175.	2.2	18
75	Engineering active sites for enhancing synergy in heterogeneous catalytic oxidations. Chemical Communications, 2011, 47, 517-519.	2.2	40
76	Exceptionally Active Single‣ite Nanocluster Multifunctional Catalysts for Cascade Reactions. ChemCatChem, 2010, 2, 402-406.	1.8	19
77	Mono-, Bi- and Multifunctional Single-Sites: Exploring the Interface Between Heterogeneous and Homogeneous Catalysis. Topics in Catalysis, 2010, 53, 848-858.	1.3	38
78	Synergistic Behavior of Bimetallic Rhenium Cluster Catalysts: Spectroscopic Investigation into the Nature of the Active Site. Chemistry - A European Journal, 2010, 16, 8202-8209.	1.7	13
79	The role of isolated active centres in high-performance bioinspired selective oxidation catalysts. Chemical Communications, 2010, 46, 2805.	2.2	9
80	Single-Site Heterogeneous Catalysts: Innovations, Advantages, and Future Potential in Green Chemistry and Sustainable Technology. , 2010, , 457-474.		4
81	Designed Nanoporous Solids for the Green Production of Vitamins, Fine Chemicals and Renewable Nylons. Topics in Catalysis, 2009, 52, 322-332.	1.3	13
82	Single-site Biomimetic Amino Acid Complexes for the Benign Oxidation of Hydrocarbons and Alcohols. Topics in Catalysis, 2009, 52, 1669-1676.	1.3	8
83	New Catalytic Liquid-Phase Ammoxidation Approach to the Preparation of Niacin (Vitamin) Tj ETQq1 1 0.78431	.4 rgßŢ /Ov	verlock 10 Tf
84	Nanoporous oxidic solids: the confluence of heterogeneous and homogeneous catalysis. Physical Chemistry Chemical Physics, 2009, 11, 2799.	1.3	63
85	Facile, Oneâ€Step Production of Niacin (Vitamin B ₃) and Other Nitrogenâ€Containing Pharmaceutical Chemicals with a Singleâ€Site Heterogeneous Catalyst. Chemistry - A European Journal, 2008, 14, 2340-2348.	1.7	28
86	Toward Less Dependence on Platinum Group Metal Catalysts: The Merits of Utilizing Tin. Langmuir, 2008, 24, 9223-9226.	1.6	66
87	Exploiting Nanospace for Asymmetric Catalysis: Confinement of Immobilized, Single-Site Chiral Catalysts Enhances Enantioselectivity. Accounts of Chemical Research, 2008, 41, 708-720.	7.6	264
88	Synthesis, characterization, electronic structure and catalytic performance of bimetallic and trimetallic nanoparticles containing tin. Faraday Discussions, 2008, 138, 301-315.	1.6	62
89	Designed open-structure heterogeneous catalysts for the synthesis of fine chemicals and pharmaceuticals. Studies in Surface Science and Catalysis, 2007, , 19-40.	1.5	9
90	Bimetallic Ru–Sn Nanoparticle Catalysts for the Solventâ€Free Selective Hydrogenation of 1,5,9 yclododecatriene to Cyclododecene. Angewandte Chemie - International Edition, 2007, 46, 8182-8185.	7.2	82

#	Article	IF	CITATIONS
91	The role of the Jilin-DFRL collaboration in the emergence of open-structure single-site solid catalysts. Microporous and Mesoporous Materials, 2007, 105, 5-9.	2.2	7
92	A high-performance selective oxidation system for the facile production of fine chemicals. Chemical Communications, 2007, , 1924.	2.2	27
93	Chapter 37. Strategically Designed Single-Site Heterogeneous Catalysts for Clean Technology, Green Chemistry and Sustainable Development. , 2007, , 623-638.		2
94	Highly efficient one-step conversion of cyclohexane to adipic acid using single-site heterogeneous catalysts. Chemical Communications, 2006, , 448-450.	2.2	60
95	The advantages and future potential of single-site heterogeneous catalysts. Topics in Catalysis, 2006, 40, 3-17.	1.3	110
96	Benign oxidants and single-site solid catalysts for the solvent-free selective oxidation of toluene. Catalysis Letters, 2006, 110, 179-183.	1.4	34
97	Innovations in oxidation catalysis leading to a sustainable societyâ ⁻ †. Catalysis Today, 2006, 117, 22-31.	2.2	75
98	Nanoporous solids as receptacles and catalysts for unusual conversions of organic compounds. Solid State Sciences, 2006, 8, 326-331.	1.5	13
99	Single-Site Heterogeneous Catalysts. ChemInform, 2006, 37, no.	0.1	1
100	Single-Step Conversion of Dimethyl Terephthalate into Cyclohexanedimethanol with Ru5PtSn, a Trimetallic Nanoparticle Catalyst. Angewandte Chemie - International Edition, 2006, 45, 4782-4785.	7.2	148
101	DESIGNING CATALYSTS FOR CLEAN TECHNOLOGY, GREEN CHEMISTRY, AND SUSTAINABLE DEVELOPMENT. Annual Review of Materials Research, 2005, 35, 315-350.	4.3	83
102	Highly efficient catalysts for the hydrogenation of nitro-substituted aromatics. Chemical Communications, 2005, , 2026.	2.2	76
103	Single-Site Heterogeneous Catalysts. Angewandte Chemie - International Edition, 2005, 44, 6456-6482.	7.2	804
104	Significance of Mesoporous Crystals for Catalytic Application. ChemInform, 2005, 36, no.	0.1	1
105	Catalytic Significance of Organometallic Compounds Immobilized on Mesoporous Silica: Economically and Environmetally Important Examples. ChemInform, 2005, 36, no.	0.1	0
106	Designing Catalysts for Clean Technology, Green Chemistry, and Sustainable Development. ChemInform, 2005, 36, no.	0.1	1
107	Producing Hazardous ReagentsIn Situ Using Single-Site Heterogeneous Catalysts. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2005, 631, 2942-2946.	0.6	8
108	Design of a "green" one-step catalytic production of Â-caprolactam (precursor of nylon-6). Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 13732-13736.	3.3	118

#	Article	IF	CITATIONS
109	Highly selective epoxidation of styrene using a transition metal–aluminium(iii) complex containing the [MeAl(2-py)3]â°'anion (2-py = 2-pyridyl). Chemical Communications, 2005, , 198-200.	2.2	39
110	Novel, benign, solid catalysts for the oxidation of hydrocarbons. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2005, 363, 1001-1012.	1.6	14
111	On the Structure of Cobalt-Substituted Aluminophosphate Catalysts and Their Catalytic Performance. , 2005, , 195-212.		1
112	The Chemical Application of High-Resolution Electron Tomography: Bright Field or Dark Field?. Angewandte Chemie - International Edition, 2004, 43, 6745-6747.	7.2	64
113	Molecular Mixed-Metal Clusters as Precursors for Highly Active Supported Bimetallic Nanoparticles. ChemInform, 2004, 35, no.	0.1	0
114	Novel ruthenium(II) diamine complexes. Inorganica Chimica Acta, 2004, 357, 1247-1255.	1.2	9
115	Rhodium(I) and palladium(II) complexes with the Schiff base 2,2′-bis((4S)-4-benzyl-2-oxazoline). Inorganica Chimica Acta, 2004, 357, 3351-3359.	1.2	5
116	Catalytic significance of organometallic compounds immobilized on mesoporous silica: economically and environmentally important examples. Journal of Organometallic Chemistry, 2004, 689, 4110-4124.	0.8	133
117	High-Resolution Scanning Transmission Electron Tomography and Elemental Analysis of Zeptogram Quantities of Heterogeneous Catalyst. Journal of Physical Chemistry B, 2004, 108, 4590-4592.	1.2	57
118	Significance of mesoporous crystals for catalytic application. Studies in Surface Science and Catalysis, 2004, 148, 163-211.	1.5	21
119	Shape-Selective Regiospecific and Bifunctional Nanoporous Catalysts for Single Step Solvent Free Processes. Nanostructure Science and Technology, 2004, , 249-272.	0.1	3
120	Molecular Mixed-Metal Clusters as Precursors for Highly Active Supported Bimetallic Nanoparticles. Nanostructure Science and Technology, 2004, , 33-49.	0.1	5
121	A New Approach to the Design of Heterogeneous Single-Site Enantioselective Catalysts. Topics in Catalysis, 2003, 25, 71-79.	1.3	31
122	On the Similarity in Catalytic Activity of Homogeneous and Heterogeneous Cr(VI) Catalysts in the Decomposition of Cyclohexyl Hydroperoxide. Catalysis Letters, 2003, 91, 253-259.	1.4	26
123	Title is missing!. Angewandte Chemie, 2003, 115, 1558-1561.	1.6	29
124	Title is missing!. Angewandte Chemie, 2003, 115, 2547-2547.	1.6	0
125	New Catalysts for Clean Technology. ChemInform, 2003, 34, no.	0.1	0
126	High-Performance Nanocatalysts for Single-Step Hydrogenations. ChemInform, 2003, 34, no.	0.1	3

#	Article	IF	CITATIONS
127	Bimetallic Nanocatalysts for the Conversion of Muconic Acid to Adipic Acid ChemInform, 2003, 34, no.	0.1	1
128	Synthesis of Ru—M Cluster Compounds and Their Use as Precursors for Nanoparticle Catalysts Supported on Mesoporous Silica. ChemInform, 2003, 34, no.	0.1	0
129	On the Structure of Cobalt-Substituted Aluminophosphate Catalysts and Their Catalytic Performance ChemInform, 2003, 34, no.	0.1	0
130	Mechanistic Insights into the Conversion of Cyclohexene to Adipic Acid by H2O2 in the Presence of a TAPO-5 Catalyst. Angewandte Chemie - International Edition, 2003, 42, 1520-1523.	7.2	113
131	Enhancing the Enantioselectivity of Novel Homogeneous Organometallic Hydrogenation Catalysts. Angewandte Chemie - International Edition, 2003, 42, 4326-4331.	7.2	177
132	Mechanistic Insights into the Conversion of Cyclohexene to Adipic Acid by H2O2 in the Presence of a TAPO-5 Catalyst. Angewandte Chemie - International Edition, 2003, 42, 2443-2443.	7.2	1
133	Constraining Asymmetric Organometallic Catalysts within Mesoporous Supports Boosts Their Enantioselectivity. Journal of the American Chemical Society, 2003, 125, 14982-14983.	6.6	191
134	High-Performance Nanocatalysts for Single-Step Hydrogenations. Accounts of Chemical Research, 2003, 36, 20-30.	7.6	553
135	Bimetallic Catalysts and Their Relevance to the Hydrogen Economy. Industrial & Engineering Chemistry Research, 2003, 42, 1563-1570.	1.8	82
136	33 Synthesis of Ru-M cluster compounds and their use as precursors for nanoparticle catalysts supported on mesopous silica. Studies in Surface Science and Catalysis, 2003, , 181-184.	1.5	3
137	Bimetallic nanocatalysts for the conversion of muconic acid to adipic acidElectronic supplementary information (ESI) available: experimental details, EXAFS fit and refined EXAFS parameters. See http://www.rsc.org/suppdata/cc/b3/b300203a/. Chemical Communications, 2003, , 1126-1127.	2.2	72
138	THE EXPANDING WORLD OF NANOPARTICLE AND NANOPOROUS CATALYSTS. , 2003, , 329-357.		1
139	Potent New Heterogeneous Asymmetric Catalysts. Helvetica Chimica Acta, 2003, 86, 1753-1759.	1.0	50
140	Engineering active sites in bifunctional nanopore and bimetallic nanoparticle catalysts for one-step, solvent-free processes. Studies in Surface Science and Catalysis, 2002, 141, 317-328.	1.5	1
141	Catalyst design strategies for controlling reactions in microporous and mesoporous molecular-sieves. Journal of Molecular Catalysis A, 2002, 181, 3-14.	4.8	49
142	New catalysts for clean technology. Journal of Molecular Catalysis A, 2002, 182-183, 89-97.	4.8	68
143	Title is missing!. Topics in Catalysis, 2002, 20, 85-88.	1.3	17
144	Molecular Sieve Catalysts for the Regioselective and Shape- Selective Oxyfunctionalization of Alkanes in Air. Accounts of Chemical Research, 2001, 34, 191-200.	7.6	299

#	Article	IF	CITATIONS
145	Bifunctional Molecular Sieve Catalysts for the Benign Ammoximation of Cyclohexanone:Â One-Step, Solvent-Free Production of Oxime and Îμ-Caprolactam with a Mixture of Air and Ammonia. Journal of the American Chemical Society, 2001, 123, 8153-8154.	6.6	113
146	Immobilisation of ruthenium cluster catalysts via novel derivatisations of ArgoGel resinsElectronic supplementary information (ESI) available: footnotes to the text. See http://www.rsc.org/suppdata/cc/b1/b106336g/. Chemical Communications, 2001, , 2624-2625.	2.2	26
147	Catalytically active centres in porous oxides: design and performance of highly selective new catalysts. Chemical Communications, 2001, , 675-687.	2.2	175
148	Benign by design. New catalysts for an environmentally conscious age. Pure and Applied Chemistry, 2001, 73, 1087-1101.	0.9	34
149	Nanopore and nanoparticle catalysts. Chemical Record, 2001, 1, 448-466.	2.9	65
150	Solvent-Free Routes to Clean Technology. Chemistry - A European Journal, 2001, 7, 2972-2978.	1.7	85
151	Solvent-Free, Low-Temperature, Selective Hydrogenation of Polyenes using a Bimetallic Nanoparticle Ru-Sn Catalyst. Angewandte Chemie - International Edition, 2001, 40, 1211-1215.	7.2	201
152	Single-Step, Highly Active, and Highly Selective Nanoparticle Catalysts for the Hydrogenation of Key Organic Compounds. Angewandte Chemie - International Edition, 2001, 40, 4638-4642.	7.2	165
153	Single step, solvent-free processes: examples and prospects. Russian Chemical Bulletin, 2001, 50, 2010-2014.	0.4	5
154	Review: The Materials Chemistry of Inorganic Catalysts. Australian Journal of Chemistry, 2001, 54, 551.	0.5	25
155	Advances in the Determination of the Architecture of Active Sites in Solid Catalysts. , 2001, , 95-114. Solvent-Free, Low-Temperature, Selective Hydrogenation of Polyenes using a Bimetallic Nanoparticle		1
156	Solvent-Free, Low-Temperature, Selective Hydrogenation of Polyenes using a Bimetallic Nanoparticle Ru-Sn Catalyst We thank Dr. R. G. Bell for assistance with the computer graphics, Drs. P. A. Midgeley, V. Keast, and M. Weyland for help with STEM, and gratefully acknowledge the support (via a rolling) Tj ETQq0 0 0 r	gBT /Overl 7.2	oc뵪 10 Tf 50
157	from the Leverhulme Foundation and a Marie Curie Fellowship within the TMR Programme of the European Commissio. Angewandte Chemie - International Edition, 2001, 40, 1211-1215. Designing a Heterogeneous Catalyst for the Production of Adipic Acid by Aerial Oxidation of Cyclohexane. Angewandte Chemie - International Edition, 2000, 39, 2310-2313.	7.2	189
158	Designing a Molecular Sieve Catalyst for the Aerial Oxidation ofn-Hexane to Adipic Acid. Angewandte Chemie - International Edition, 2000, 39, 2313-2316.	7.2	104
159	Redox molecular sieve catalysts for the aerobic selective oxidation of hydrocarbons. Studies in Surface Science and Catalysis, 2000, , 887-892.	1.5	25
160	A one-step, enantioselective reduction of ethyl nicotinate to ethyl nipecotinate using a constrained, chiral, heterogeneous catalyst. Chemical Communications, 2000, , 1925-1926.	2.2	136
161	Copper(II) phthalocyanines entrapped in MFI zeolite catalysts and their application in phenol hydroxylation. Applied Catalysis A: General, 1999, 178, 243-249.	2.2	25
162	Direct oxidation of propane to isopropanol. Catalysis Today, 1999, 49, 171-175.	2.2	23

#	Article	IF	CITATIONS
163	Molecular-sieve catalysts for the selective oxidation of linear alkanes by molecular oxygen. Nature, 1999, 398, 227-230.	13.7	399
164	Powerful Redox Molecular Sieve Catalysts for the Selective Oxidation of Cyclohexane in Air. Journal of the American Chemical Society, 1999, 121, 11926-11927.	6.6	219
165	Templating mesoporous silicates on surfactant ruthenium complexes: a direct approach to heterogeneous catalysts. Chemical Communications, 1999, , 2031-2032.	2.2	67
166	New catalysts for the aerobic selective oxidation of hydrocarbons: Mn(III)- and Co(III)-containing molecular sieves for the epoxidation of alkenes. Chemical Communications, 1999, , 829-830.	2.2	80
167	Baeyer–Villiger oxidations with a difference: molecular sieve redox catalysts for the low-temperature conversion of ketones to lactones. Chemical Communications, 1999, , 525-526.	2.2	59
168	Preparation and characterisation of a highly active bimetallic (Pd–Ru) nanoparticle heterogeneous catalystâ€. Chemical Communications, 1999, , 1571-1572.	2.2	124
169	Redox solid catalysts for the selective oxidation of cyclohexane in air. Catalysis Letters, 1998, 55, 15-23.	1.4	105
170	Preparation, Characterisation and Performance of Encapsulated Copper-Ruthenium Bimetallic Catalysts Derived from Molecular Cluster Carbonyl Precursors. Chemistry - A European Journal, 1998, 4, 1214-1224.	1.7	163
171	A manganese-containing molecular sieve catalyst designed for the terminal oxidation of dodecane in air. Chemical Communications, 1998, , 1841-1842.	2.2	40
172	Selective oxidation of aromatic hydrocarbons over copper complexes encapsulated in molecular sieves. Studies in Surface Science and Catalysis, 1997, , 1037-1044.	1.5	14
173	Oxidation of cyclohexane over copper phthalocyanines encapsulated in zeolites. Catalysis Letters, 1997, 48, 1-10.	1.4	83
174	Direct conversion of methane to methanol. Applied Catalysis A: General, 1997, 158, L7-L15.	2.2	101
175	Oxyhalogenation of Aromatics over Copper Phthalocyanines Encapsulated in Zeolites. Journal of Catalysis, 1997, 170, 244-253.	3.1	98
176	Selective oxidation of phenols using copper complexes encapsulated in zeolites. Applied Catalysis A: General, 1996, 143, 145-158.	2.2	49
177	Selective oxidation with copper complexes incorporated in molecular sieves. Studies in Surface Science and Catalysis, 1996, 101, 181-190.	1.5	45
178	Beamline design for particle production experiment, E907, at FNAL. , 0, , .		3
179	Heterogenized ionic liquid-metal oxide hybrids: enhanced catalytic activity in the liquid-phase Beckmann rearrangement. ACS Sustainable Chemistry and Engineering, 0, , .	3.2	1