Jingxin Meng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4388082/publications.pdf Version: 2024-02-01

INCYIN MENC

#	Article	IF	CITATIONS
1	Scalable and Robust Bio-inspired Organogel Coating by Spraying Method Towards Dynamic Anti-scaling. Chemical Research in Chinese Universities, 2023, 39, 127-132.	2.6	2
2	How to Prevent Bubbles in Microfluidic Channels. Langmuir, 2021, 37, 2187-2194.	3.5	20
3	Nickel-Catcher-Doped Zwitterionic Hydrogel Coating on Nickel–Titanium Alloy Toward Capture and Detection of Nickel Ions. Frontiers in Bioengineering and Biotechnology, 2021, 9, 698745.	4.1	3
4	Recent Progress of Bioinspired Scalephobic Surfaces with Specific Barrier Layers. Langmuir, 2021, 37, 8639-8657.	3.5	15
5	Nacreâ€Inspired Biomineralized Mesh toward Scalable and Robust Oil–Water Separation with High Efficiency. Advanced Materials Interfaces, 2021, 8, 2100852.	3.7	10
6	Evaporationâ€Induced rGO Coatings for Highly Sensitive and Nonâ€Invasive Diagnosis of Prostate Cancer in the PSA Gray Zone. Advanced Materials, 2021, 33, e2103999.	21.0	18
7	Advanced Nanotechnologies for Extracellular Vesicleâ€Based Liquid Biopsy. Advanced Science, 2021, 8, e2102789.	11.2	46
8	Bioinspired Multiscale Wet Adhesive Surfaces: Structures and Controlled Adhesion. Advanced Functional Materials, 2020, 30, 1905287.	14.9	137
9	Advanced Antiscaling Interfacial Materials toward Highly Efficient Heat Energy Transfer. Advanced Functional Materials, 2020, 30, 1904796.	14.9	33
10	Underwater Superoleophobicity: Nacreâ€Inspired Mineralized Films with High Transparency and Mechanically Robust Underwater Superoleophobicity (Adv. Mater. 11/2020). Advanced Materials, 2020, 32, 2070084.	21.0	3
11	Nacreâ€Inspired Mineralized Films with High Transparency and Mechanically Robust Underwater Superoleophobicity. Advanced Materials, 2020, 32, e1907413.	21.0	51
12	Flexible Dry Hydrogel with Lamella-Like Structure Engineered via Dehydration in Poor Solvent. CCS Chemistry, 2020, 2, 533-543.	7.8	7
13	Flexible Dry Hydrogel with Lamella-Like Structure Engineered via Dehydration in Poor Solvent. CCS Chemistry, 2020, 2, 533-543.	7.8	0
14	Bioinspired Microfluidic Device by Integrating a Porous Membrane and Heterostructured Nanoporous Particles for Biomolecule Cleaning. ACS Nano, 2019, 13, 8374-8381.	14.6	40
15	Photo-Irresponsive Molecule-Amplified Cell Release on Photoresponsive Nanostructured Surfaces. ACS Applied Materials & Interfaces, 2019, 11, 29681-29688.	8.0	18
16	Bioinspired Superhydrophobic Ni–Ti Archwires with Resistance to Bacterial Adhesion and Nickel Ion Release. Advanced Materials Interfaces, 2019, 6, 1801569.	3.7	13
17	Selfâ€Organization: Topographyâ€Induced Cell Selfâ€Organization from Simple to Complex Aggregates (Small 15/2019). Small, 2019, 15, 1970080.	10.0	0
18	Superhydrophobic Archwires: Bioinspired Superhydrophobic Ni–Ti Archwires with Resistance to Bacterial Adhesion and Nickel Ion Release (Adv. Mater. Interfaces 7/2019). Advanced Materials Interfaces, 2019, 6, 1970046.	3.7	4

JINGXIN MENG

#	Article	IF	CITATIONS
19	Topographyâ€Induced Cell Selfâ€Organization from Simple to Complex Aggregates. Small, 2019, 15, e1900030.	10.0	10
20	Bio-inspired superhydrophilic coatings with high anti-adhesion against mineral scales. NPG Asia Materials, 2018, 10, e471-e471.	7.9	30
21	Electrochemical Responsive Superhydrophilic Surfaces of Polythiophene Derivatives towards Cell Capture and Release. ChemPhysChem, 2018, 19, 2046-2051.	2.1	13
22	Protein-mediated anti-adhesion surface against oral bacteria. Nanoscale, 2018, 10, 2711-2714.	5.6	28
23	Photo-responsive smart surfaces with controllable cell adhesion. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 355, 202-211.	3.9	26
24	Superwettable microchips with improved spot homogeneity toward sensitive biosensing. Biosensors and Bioelectronics, 2018, 102, 418-424.	10.1	47
25	Polyoxometalate-based microcrystal arrays patterned on air-grid superwettable surface. Scientific Reports, 2018, 8, 13915.	3.3	1
26	Controlled Growth of Patterned Conducting Polymer Microsuckers on Superhydrophobic Micropillar‣tructured Templates. Advanced Functional Materials, 2018, 28, 1800240.	14.9	27
27	Bio-Inspired Underwater Super Oil-Repellent Coatings for Anti-Oil Pollution. Langmuir, 2018, 34, 6063-6069.	3.5	21
28	Hydrophilic/Oleophilic Magnetic Janus Particles for the Rapid and Efficient Oil–Water Separation. Advanced Functional Materials, 2018, 28, 1802493.	14.9	144
29	Efficient Capture of Cancer Cells by Their Replicated Surfaces Reveals Multiscale Topographic Interactions Coupled with Molecular Recognition. ACS Applied Materials & Interfaces, 2017, 9, 10537-10543.	8.0	44
30	Cell adhesive spectra along surface wettability gradient from superhydrophilicity to superhydrophobicity. Science China Chemistry, 2017, 60, 614-620.	8.2	42
31	Bioinspired Pollenâ€Like Hierarchical Surface for Efficient Recognition of Target Cancer Cells. Advanced Healthcare Materials, 2017, 6, 1700003.	7.6	31
32	A general strategy to synthesize chemically and topologically anisotropic Janus particles. Science Advances, 2017, 3, e1603203.	10.3	105
33	A monolithic hydro/organo macro copolymer actuator synthesized via interfacial copolymerization. NPG Asia Materials, 2017, 9, e380-e380.	7.9	71
34	Photo-responsive polymer materials for biological applications. Chinese Chemical Letters, 2017, 28, 2085-2091.	9.0	35
35	Amplified effect of surface charge on cell adhesion by nanostructures. Nanoscale, 2016, 8, 12540-12543.	5.6	41
36	Hierarchical Nanowire Arrays as Three-Dimensional Fractal Nanobiointerfaces for High Efficient Capture of Cancer Cells. Nano Letters, 2016, 16, 766-772.	9.1	122

JINGXIN MENG

#	Article	IF	CITATIONS
37	Recent progress of abrasion-resistant materials: learning from nature. Chemical Society Reviews, 2016, 45, 237-251.	38.1	42
38	Semiâ€Eggâ€Like Heterogeneous Compartmentalization of Cells Controlled by Contact Angle Hysteresis. Advanced Functional Materials, 2015, 25, 4506-4511.	14.9	8
39	Rapid Cell Patterning Induced by Differential Topography on Silica Nanofractal Substrates. Small, 2015, 11, 5642-5646.	10.0	16
40	Directly Coating Hydrogel on Filter Paper for Effective Oil–Water Separation in Highly Acidic, Alkaline, and Salty Environment. Advanced Functional Materials, 2015, 25, 5368-5375.	14.9	322
41	A Self-Cleaning TiO2 Nanosisal-like Coating toward Disposing Nanobiochips of Cancer Detection. ACS Nano, 2015, 9, 9284-9291.	14.6	76
42	Trap Effect of Threeâ€Dimensional Fibers Network for High Efficient Cancer ell Capture. Advanced Healthcare Materials, 2015, 4, 838-843.	7.6	53
43	Grooved Organogel Surfaces towards Anisotropic Sliding of Water Droplets. Advanced Materials, 2014, 26, 3131-3135.	21.0	113
44	Plateletâ€Inspired Multiscaled Cytophilic Interfaces with High Specificity and Efficiency toward Pointâ€ofâ€Care Cancer Diagnosis. Small, 2014, 10, 4677-4683.	10.0	25
45	Hierarchical Biointerfaces Assembled by Leukocyteâ€Inspired Particles for Specifically Recognizing Cancer Cells. Small, 2014, 10, 3735-3741.	10.0	37
46	Recent Progress in Biointerfaces with Controlled Bacterial Adhesion by Using Chemical and Physical Methods. Chemistry - an Asian Journal, 2014, 9, 2004-2016.	3.3	39
47	Papilla-like magnetic particles with hierarchical structure for oil removal from water. Chemical Communications, 2013, 49, 8752.	4.1	70
48	Dual-Responsive Surfaces Modified with Phenylboronic Acid-Containing Polymer Brush To Reversibly Capture and Release Cancer Cells. Journal of the American Chemical Society, 2013, 135, 7603-7609.	13.7	371
49	Hydrophobic Interactionâ€Mediated Capture and Release of Cancer Cells on Thermoresponsive Nanostructured Surfaces. Advanced Materials, 2013, 25, 922-927.	21.0	247
50	Programmable Fractal Nanostructured Interfaces for Specific Recognition and Electrochemical Release of Cancer Cells. Advanced Materials, 2013, 25, 3566-3570.	21.0	198
51	Clam's Shell Inspired Highâ€Energy Inorganic Coatings with Underwater Low Adhesive Superoleophobicity. Advanced Materials, 2012, 24, 3401-3405.	21.0	277
52	Controllable self-assembly of four new metal–organic frameworks based on different phosphomolybdate clusters by altering the molar ratio of H3PO4 and Na2MoO4. CrystEngComm, 2011, 13, 2479.	2.6	86
53	Controllable assembly of four new POM-based supramolecular compounds by altering the POM secondary building units from pseudo-Keggin to classical Keggin. CrystEngComm, 2011, 13, 2687.	2.6	37
54	Polyoxometalate-Based Metalâ^'Organic Frameworks Assembled under the Ionothermal Conditions. Crystal Growth and Design, 2011, 11, 458-465.	3.0	123

JINGXIN MENG

#	Article	IF	CITATIONS
55	Controllable self-assembly of two novel metal–organic frameworks based on different tetradentate in situ ligands. CrystEngComm, 2011, 13, 649-655.	2.6	46
56	Three organic–inorganic hybrid complexes based on the Wells–Dawson polyoxoanion. Transition Metal Chemistry, 2011, 36, 201-206.	1.4	4
57	The construction of a new POMs-based inorganic–organic hybrid framework involving in-situ ligand conversion from 1,3-bis(4-pyridyl)propane to isonicotinic acid. Inorganica Chimica Acta, 2011, 370, 203-206.	2.4	15
58	Syntheses, crystal structures and photochemistry of two new organic–inorganic hybrid compounds based on copper–glycin complexes and paradodecatungstates. Journal of Coordination Chemistry, 2010, 63, 26-35.	2.2	7
59	Synthesis, crystal structure, and characterization of a new high-dimensional phosphomolybdate architecture built from silver-complex fragments and hexa-connected P2Mo5 clusters. Journal of Coordination Chemistry, 2009, 62, 2283-2289.	2.2	5
60	Synthesis, structures and electrochemical properties of four organic–inorganic hybrid polyoxometalates constructed from polyoxotungstate clusters and transition metal complexes. Transition Metal Chemistry, 2009, 34, 281-288.	1.4	4
61	Syntheses, crystal structures and electrochemical properties of three organic-inorganic hybrid supramolecular compounds based on copper-complex fragments and different polyoxometalates. Transition Metal Chemistry, 2009, 34, 361-366.	1.4	3
62	Base-Directed Self-Assembly of Octamolybdate-Based Frameworks Decorated by Flexible N-Containing Ligands. Crystal Growth and Design, 2009, 9, 4116-4126.	3.0	122
63	An unprecedented (3,4)-connected self-penetrating network of zinc complex: In situ formation of a tetradentate N-heterocyclic ligand under POMs-mediated hydrothermal conditions. Inorganica Chimica Acta, 2008, 361, 2447-2454.	2.4	26
64	Syntheses and crystal structures of two compounds based on saturated keggin-type polyoxotungstates and mixed ligands. Journal of Coordination Chemistry, 2008, 61, 2853-2860.	2.2	7
65	A new chain-like heteropolytungstate formed by Keggin cluster units: Synthesis and structure of [H2bpv]3[SiMnW11O39]A-1.25H2O. Chinese Chemical Letters. 2007. 18. 81-84.	9.0	5