Mikhail Mazurenka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4387969/publications.pdf

Version: 2024-02-01

471509 677142 1,038 32 17 22 citations h-index g-index papers 32 32 32 835 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Trimodal system for in vivo skin cancer screening with combined optical coherence tomographyâ€Raman and colocalized optoacoustic measurements. Journal of Biophotonics, 2018, 11, e201700288.	2.3	34
2	Comparative study of presurgical skin infiltration depth measurements of melanocytic lesions with OCT and high frequency ultrasound. Journal of Biophotonics, 2017, 10, 854-861.	2.3	32
3	Development of a combined OCT-Raman probe for the prospective <i>in vivo</i> clinical melanoma skin cancer screening. Review of Scientific Instruments, 2017, 88, 105103.	1.3	33
4	Non-contact time-domain imaging of functional brain activation and heterogeneity of superficial signals. Proceedings of SPIE, 2017 , , .	0.8	1
5	Characterization of a time-resolved non-contact scanning diffuse optical imaging system exploiting fast-gated single-photon avalanche diode detection. Review of Scientific Instruments, 2016, 87, 035118.	1.3	20
6	Simple model to simulate OCT-depth signal in weakly and strongly scattering homogeneous media. Journal of Optics (United Kingdom), 2016, 18, 125302.	2.2	11
7	Design and construction of a solid switchable phantom for diffuse optical imaging. , 2015, , .		O
8	Non-contact scanning time-domain functional optical imaging of the adult human brain. Proceedings of SPIE, 2015 , , .	0.8	2
9	Time-Domain Diffuse Optical Imaging of Tissue by Non-contact Scanning. Springer Series in Chemical Physics, 2015, , 561-585.	0.2	2
10	Non-contact scanning time-domain functional optical imaging of the adult human brain. , 2015, , .		O
11	Phantoms for diffuse optical imaging based on totally absorbing objects, part 2: experimental implementation. Journal of Biomedical Optics, 2014, 19, 076011.	2.6	40
12	Performance assessment of time-domain optical brain imagers, part 2: nEUROPt protocol. Journal of Biomedical Optics, 2014, 19, 086012.	2.6	85
13	Performance assessment of time-domain optical brain imagers, part 1: basic instrumental performance protocol. Journal of Biomedical Optics, 2014, 19, 086010.	2.6	101
14	Determination of reference values for optical properties of liquid phantoms based on Intralipid and India ink. Biomedical Optics Express, 2014, 5, 2037.	2.9	133
15	A non-contact time-domain scanning brain imaging system: first in-vivo results. , 2013, , .		2
16	Non-contact in vivo diffuse optical imaging using a time-gated scanning system. Biomedical Optics Express, 2013, 4, 2257.	2.9	41
17	Realistic inhomogeneous phantoms using an equivalent black volume. Proceedings of SPIE, 2013, , .	0.8	O
18	Performance assessment of time-domain optical brain imagers: a multi-laboratory study., 2013,,.		7

#	Article	IF	CITATIONS
19	Non-contact time-resolved diffuse reflectance imaging at null source-detector separation. Optics Express, 2012, 20, 283.	3.4	46
20	Inter-Laboratory Comparison of Optical Properties Performed on Intralipid and India Ink., 2012, , .		2
21	Performance Assessment of Time-Domain Optical Brain Imagers: The nEUROPt Protocol. , 2012, , .		2
22	Development of an optical non-contact time-resolved diffuse reflectance scanning imaging system. , 2012, , .		2
23	Assessment of basic instrumental performance of time-domain optical brain imagers. Proceedings of SPIE, 2011, , .	0.8	6
24	Non-contact time-domain scanning brain imager: results of proof of principle tests. , 2011, , .		0
25	Towards the Definition of Accurately Calibrated Liquid Phantoms for Photon Migration at NIR Wavelengths: a Multi-Laboratory Study. , 2010, , .		0
26	Evanescent Wave Cavity Ring-Down Spectroscopy as a Probe of Interfacial Adsorption: Interaction of Tris(2,2′-bipyridine)ruthenium(II) with Silica Surfaces and Polyelectrolyte Films. Langmuir, 2009, 25, 248-255.	3. 5	25
27	Evanescent wave broadband cavity enhanced absorption spectroscopy using supercontinuum radiation: A new probe of electrochemical processes. Electrochemistry Communications, 2008, 10, 1827-1830.	4.7	40
28	In-Situ Measurement of Colloidal Gold Adsorption on Functionalized Silica Surfaces. Journal of Physical Chemistry C, 2008, 112, 6462-6468.	3.1	29
29	Surface Assembly and Redox Dissolution of Silver Nanoparticles Monitored by Evanescent Wave Cavity Ring-Down Spectroscopy. Journal of Physical Chemistry C, 2008, 112, 15274-15280.	3.1	23
30	Evanescent Wave Cavity Ring-Down Spectroscopy in a Thin-Layer Electrochemical Cell. Analytical Chemistry, 2006, 78, 6833-6839.	6.5	39
31	Fast Fourier transform analysis in cavity ring-down spectroscopy: application to an optical detector for atmospheric NO2. Applied Physics B: Lasers and Optics, 2005, 81, 135-141.	2.2	55
32	4ÂÂCavity ring-down and cavity enhanced spectroscopy using diode lasers. Annual Reports on the Progress of Chemistry Section C, 2005, 101, 100.	4.4	225