
Dieter Kabelitz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4387960/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Stimulatory and inhibitory activity of STING ligands on tumor-reactive human gamma/delta T cells. Oncolmmunology, 2022, 11, 2030021.	4.6	7
2	Accelerated co-cultured dendritic cell (acDC) loaded with autologous apoptotic bodies might be a promising approach for antigen delivery. Journal of Immunoassay and Immunochemistry, 2022, , 1-13.	1.1	0
3	Lower frequency of T stem cell memory (TSCM) cells in hepatitis B vaccine nonresponders. Immunologic Research, 2022, 70, 469-480.	2.9	1
4	A Ménage à Trois of Cytotoxic Effector Cells: γÎ′T Cells Suppress NK Cells but Not CTLs. Cancer Immunology Research, 2022, , OF1-OF1.	3.4	1
5	Analysis of the Seasonal Fluctuation of Î ³ δT Cells and Its Potential Relation with Vitamin D3. Cells, 2022, 11, 1460.	4.1	6
6	Immune surveillance in glioblastoma: Role of the <scp>NKG2D</scp> system and novel cellâ€based therapeutic approaches. Scandinavian Journal of Immunology, 2022, 96, .	2.7	13
7	Vitamin C and Vitamin D—friends or foes in modulating γδT-cell differentiation?. , 2022, 19, 1198-1200.		2
8	Allogeneic Vl̂ ³ 9Vl̂́2 T-cell immunotherapy exhibits promising clinical safety and prolongs the survival of patients with late-stage lung or liver cancer. Cellular and Molecular Immunology, 2021, 18, 427-439.	10.5	122
9	DNA methylation profile of a hepatosplenic gamma/delta T-cell lymphoma patient associated with response to interferon-α therapy. Cellular and Molecular Immunology, 2021, 18, 1332-1335.	10.5	1
10	Reply to: Vitamin C as a promoter of $\hat{I}^{\hat{J}}\hat{I}$ T cells. Cellular and Molecular Immunology, 2021, 18, 495-495.	10.5	0
11	Erroneous expression of NKG2D on granulocytes detected by phycoerythrinâ€conjugated clone 149810 antibody. Cytometry Part B - Clinical Cytometry, 2021, , .	1.5	4
12	Proportion of T follicular helper cells in peripheral blood of rheumatoid arthritis patients: a systematic review and meta-analysis. Expert Review of Clinical Immunology, 2021, 17, 667-680.	3.0	5
13	Monocyte-dependent co-stimulation of cytokine induction in human $\hat{I}^{3\hat{I}'}$ T cells by TLR8 RNA ligands. Scientific Reports, 2021, 11, 15231.	3.3	5
14	Correlation between IL-28 polymorphism and spontaneous clearance in HCV patients: systematic review and meta-analysis. Archives of Virology, 2021, 166, 2469-2478.	2.1	6
15	A welcome of the Immunologic Research's new editors. Immunologic Research, 2021, 69, 307-308.	2.9	0
16	Targeting citrate carrier (CIC) in inflammatory macrophages as a novel metabolic approach in COVID-19 patients: A perspective. Endocrine, Metabolic and Immune Disorders - Drug Targets, 2021, 21, .	1.2	3
17	Tumor cell lysis and synergistically enhanced antibody-dependent cell-mediated cytotoxicity by NKG2D engagement with a bispecific immunoligand targeting the HER2 antigen. Biological Chemistry, 2021, .	2.5	6
18	Vitamin C, From Supplement to Treatment: A Re-Emerging Adjunct for Cancer Immunotherapy?. Frontiers in Immunology, 2021, 12, 765906.	4.8	12

#	Article	IF	CITATIONS
19	Vitamin C promotes the proliferation and effector functions of human Î ³ δT cells. Cellular and Molecular Immunology, 2020, 17, 462-473.	10.5	68
20	Degranulation of human cytotoxic lymphocytes is a major source of proteolytically active soluble CD26/DPP4. Cellular and Molecular Life Sciences, 2020, 77, 751-764.	5.4	15
21	Bispecific antibodies enhance tumor-infiltrating T cell cytotoxicity against autologous HER-2-expressing high-grade ovarian tumors. Journal of Leukocyte Biology, 2020, 107, 1081-1095.	3.3	35
22	Tumor resistance mechanisms and their consequences on γÎ′ T cell activation. Immunological Reviews, 2020, 298, 84-98.	6.0	33
23	Editorial: γδT Cells in Cancer. Frontiers in Immunology, 2020, 11, 602411.	4.8	2
24	The Effects of Type 2 Diabetes Mellitus on Organ Metabolism and the Immune System. Frontiers in Immunology, 2020, 11, 1582.	4.8	228
25	Cancer immunotherapy with Î ³ δT cells: many paths ahead of us. Cellular and Molecular Immunology, 2020, 17, 925-939.	10.5	180
26	Gamma Delta T Cells (γδT Cells) in Health and Disease: In Memory of Professor Wendy Havran. Cells, 2020, 9, 2564.	4.1	8
27	Influence of Indoleamine-2,3-Dioxygenase and Its Metabolite Kynurenine on γδT Cell Cytotoxicity against Ductal Pancreatic Adenocarcinoma Cells. Cells, 2020, 9, 1140.	4.1	31
28	An introduction to immunology and epigenetics. , 2020, , 1-23.		1
29	Activation of Human $\hat{I}^3\hat{I}$ T Cells: Modulation by Toll-Like Receptor 8 Ligands and Role of Monocytes. Cells, 2020, 9, 713.	4.1	18
30	Galectin-3 Released by Pancreatic Ductal Adenocarcinoma Suppresses Î ³ δT Cell Proliferation but Not Their Cytotoxicity. Frontiers in Immunology, 2020, 11, 1328.	4.8	16
31	A comparative view on vitamin C effects on αβ―versus γδTâ€cell activation and differentiation. Journal of Leukocyte Biology, 2020, 107, 1009-1022.	3.3	10
32	Early HIV infection is associated with reduced proportions of gamma delta T subsets as well as high creatinine and urea levels. Scandinavian Journal of Immunology, 2020, 91, e12868.	2.7	7
33	In vitro expansion of Vγ9Vδ2 T cells for immunotherapy. Methods in Enzymology, 2020, 631, 223-237.	1.0	13
34	Real-time cell analysis (RTCA) to measure killer cell activity against adherent tumor cells in vitro. Methods in Enzymology, 2020, 631, 429-441.	1.0	14
35	Pitfalls in the characterization of circulating and tissue-resident human γδT cells. Journal of Leukocyte Biology, 2020, 107, 1097-1105.	3.3	12
36	Vitamin C supports conversion of human Î ³ δT cells into FOXP3-expressing regulatory cells by epigenetic regulation. Scientific Reports, 2020, 10, 6550.	3.3	25

#	Article	IF	CITATIONS
37	Regulatory Interactions Between Neutrophils, Tumor Cells and T Cells. Frontiers in Immunology, 2019, 10, 1690.	4.8	71
38	Immunology Education Without Borders. Frontiers in Immunology, 2019, 10, 2012.	4.8	6
39	TRAIL-Receptor 4 Modulates γδT Cell-Cytotoxicity Toward Cancer Cells. Frontiers in Immunology, 2019, 10, 2044.	4.8	32
40	Histone Deacetylase Inhibitor Modulates NKG2D Receptor Expression and Memory Phenotype of Human Gamma/Delta T Cells Upon Interaction With Tumor Cells. Frontiers in Immunology, 2019, 10, 569.	4.8	22
41	Influence of forkhead box protein 3 polymorphisms (rs2232365, rs3761548) with the outcome of pregnancy: A metaâ€analysis. Journal of Cellular Physiology, 2019, 234, 16573-16581.	4.1	16
42	An update on immune dysregulation in obesityâ€related insulin resistance. Scandinavian Journal of Immunology, 2019, 89, e12747.	2.7	61
43	Granulysin species segregate to different lysosome-related effector vesicles (LREV) and get mobilized by either classical or non-classical degranulation. Molecular Immunology, 2019, 107, 44-53.	2.2	12
44	DNA methylation profiling of hepatosplenic T-cell lymphoma. Haematologica, 2019, 104, e104-e107.	3.5	11
45	TGF- \hat{l}^2 enhances the cytotoxic activity of VÎ $\hat{2}$ T cells. Oncolmmunology, 2019, 8, e1522471.	4.6	43
46	Vedolizumab is associated with changes in innate rather than adaptive immunity in patients with inflammatory bowel disease. Gut, 2019, 68, 25-39.	12.1	160
47	Pyrin and Hematopoietic Interferon-Inducible Nuclear Protein Domain Proteins: Innate Immune Sensors for Cytosolic and Nuclear DNA. Critical Reviews in Immunology, 2019, 39, 275-288.	0.5	3
48	Regulatory functions of $\hat{I}^{\hat{J}\hat{I}}$ T cells. Cellular and Molecular Life Sciences, 2018, 75, 2125-2135.	5.4	60
49	Mechanistic peculiarities of activation-induced mobilization of cytotoxic effector proteins in human T cells. International Immunology, 2018, 30, 215-228.	4.0	11
50	NKG2D ligands in glioma stem-like cells: expression in situ and in vitro. Histochemistry and Cell Biology, 2018, 149, 219-233.	1.7	27
51	Multilayer epigenetic analysis reveals novel transcription factor networks in CD8 T cells. Cellular and Molecular Immunology, 2018, 15, 199-202.	10.5	3
52	Predicting Humoral Alloimmunity from Differences in Donor and Recipient HLA Surface Electrostatic Potential. Journal of Immunology, 2018, 201, 3780-3792.	0.8	47
53	The γÎTCR combines innate immunity with adaptive immunity by utilizing spatially distinct regions for agonist selection and antigen responsiveness. Nature Immunology, 2018, 19, 1352-1365.	14.5	163
54	Immunotherapy With Human Gamma Delta T Cells—Synergistic Potential of Epigenetic Drugs?. Frontiers in Immunology, 2018, 9, 512.	4.8	11

#	Article	IF	CITATIONS
55	Tribody [(HER2)2xCD16] Is More Effective Than Trastuzumab in Enhancing Î ³ δT Cell and Natural Killer Cell Cytotoxicity Against HER2-Expressing Cancer Cells. Frontiers in Immunology, 2018, 9, 814.	4.8	84
56	P371 Vedolizumab is associated with changes in innate rather than T-cell immunity in patients with inflammatory bowel disease. Journal of Crohn's and Colitis, 2018, 12, S292-S292.	1.3	0
57	The Influence of MHC Class II on B Cell Defects Induced by Invariant Chain/CD74 N-Terminal Fragments. Journal of Immunology, 2017, 199, 172-185.	0.8	11
58	Environmental factor and inflammation-driven alteration of the total peripheral T-cell compartment in granulomatosis with polyangiitis. Journal of Autoimmunity, 2017, 78, 79-91.	6.5	34
59	In-depth immunophenotyping of patients with glioblastoma multiforme: Impact of steroid treatment. Oncolmmunology, 2017, 6, e1358839.	4.6	37
60	CD20â€Specific Immunoligands Engaging NKG2D Enhance γδT Cellâ€Mediated Lysis of Lymphoma Cells. Scandinavian Journal of Immunology, 2017, 86, 196-206.	2.7	25
61	Stochastics of Cellular Differentiation Explained by Epigenetics: The Case of Tâ€Cell Differentiation and Functional Plasticity. Scandinavian Journal of Immunology, 2017, 86, 184-195.	2.7	8
62	The Ambiguous Role of $\hat{I}^{3}\hat{I}$ T Lymphocytes in Antitumor Immunity. Trends in Immunology, 2017, 38, 668-678.	6.8	82
63	Immunosurveillance by human γδT lymphocytes: the emerging role of butyrophilins. F1000Research, 2017, 6, 782.	1.6	20
64	Butyrophilin 3A/CD277–Dependent Activation of Human γδT Cells: Accessory Cell Capacity of Distinct Leukocyte Populations. Journal of Immunology, 2016, 197, 3059-3068.	0.8	40
65	Human Î ³ δT cells: From a neglected lymphocyte population to cellular immunotherapy: A personal reflection of 30years of Î ³ δT cell research. Clinical Immunology, 2016, 172, 90-97.	3.2	17
66	Monitoring and functional characterization of the lymphocytic compartment in pancreatic ductal adenocarcinoma patients. Pancreatology, 2016, 16, 1069-1079.	1.1	28
67	Human Vδ2 T cells are a major source of interleukin-9. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12520-12525.	7.1	68
68	NKG2D- and T-cell receptor-dependent lysis of malignant glioma cell lines by human γδT cells: Modulation by temozolomide and A disintegrin and metalloproteases 10 and 17 inhibitors. OncoImmunology, 2016, 5, e1093276.	4.6	63
69	Expression of non-secreted IL-4 is associated with HDAC inhibitor-induced cell death, histone acetylation and c-Jun regulation in human gamma/delta T-cells. Oncotarget, 2016, 7, 64743-64756.	1.8	18
70	Editorial: "Recent advances in gamma/delta T cell biology: new ligands, new functions, and new translational perspectives― Frontiers in Immunology, 2015, 6, 371.	4.8	31
71	Intracellular pathways following uptake of bevacizumab in RPE cells. Experimental Eye Research, 2015, 131, 29-41.	2.6	33
72	Modulation of human gamma/delta T-cell activation and phenotype by histone deacetylase inhibitors. Cellular Immunology, 2015, 296, 50-56.	3.0	26

#	Article	IF	CITATIONS
73	Novel synthesis of fluorochrome-coupled zoledronate with preserved functional activity on gamma/delta T cells and tumor cells. MedChemComm, 2015, 6, 919-925.	3.4	3
74	Subcellular localization and activation of ADAM proteases in the context of FasL shedding in T lymphocytes. Molecular Immunology, 2015, 65, 416-428.	2.2	33
75	$\hat{I}^{\hat{J}}$ T cell activation by bispecific antibodies. Cellular Immunology, 2015, 296, 41-49.	3.0	54
76	Processing of CD74 by the Intramembrane Protease SPPL2a Is Critical for B Cell Receptor Signaling in Transitional B Cells. Journal of Immunology, 2015, 195, 1548-1563.	0.8	25
77	Lysosomeâ€Related Effector Vesicles in T Lymphocytes and <scp>NK</scp> Cells. Scandinavian Journal of Immunology, 2015, 82, 235-243.	2.7	28
78	γδT cells and epigenetic drugs: A useful merger in cancer immunotherapy?. OncoImmunology, 2015, 4, e1006088.	4.6	39
79	Resistance of cyclooxygenase-2 expressing pancreatic ductal adenocarcinoma cells against γδT cell cytotoxicity. Oncolmmunology, 2015, 4, e988460.	4.6	41
80	Increased co-expression of the natural killer cell receptor NKG2D and further natural killer cell receptors on CD4â [®] T cells in granulomatosis with polyangiitis. Clinical and Experimental Rheumatology, 2015, 33, S-183-4.	0.8	14
81	Comparative Characterization of Stroma Cells and Ductal Epithelium in Chronic Pancreatitis and Pancreatic Ductal Adenocarcinoma. PLoS ONE, 2014, 9, e94357.	2.5	70
82	Inhibition of Human <i>γδ </i> <scp>T</scp> Cell Proliferation and Effector Functions by Neutrophil Serine Proteases. Scandinavian Journal of Immunology, 2014, 80, 381-389.	2.7	16
83	Monitoring Circulating γδT Cells in Cancer Patients to Optimize γδT Cell-Based Immunotherapy. Frontiers in Immunology, 2014, 5, 643.	4.8	34
84	Neutrophil uptake of nitrogen-bisphosphonates leads to the suppression of human peripheral blood γδT cells. Cellular and Molecular Life Sciences, 2014, 71, 2335-2346.	5.4	56
85	Phenotype and regulation of immunosuppressive Vδ2-expressing γδT cells. Cellular and Molecular Life Sciences, 2014, 71, 1943-1960.	5.4	76
86	Novel Bispecific Antibodies Increase γδT-Cell Cytotoxicity against Pancreatic Cancer Cells. Cancer Research, 2014, 74, 1349-1360.	0.9	133
87	When neutrophils meet T cells: Beginnings of a tumultuous relationship with underappreciated potential. European Journal of Immunology, 2014, 44, 627-633.	2.9	77
88	Cell Fate Decisions Regulated by K63 Ubiquitination of Tumor Necrosis Factor Receptor 1. Molecular and Cellular Biology, 2014, 34, 3214-3228.	2.3	35
89	The CD3 Conformational Change in the γδT Cell Receptor Is Not Triggered by Antigens but Can Be Enforced to Enhance Tumor Killing. Cell Reports, 2014, 7, 1704-1715.	6.4	47
90	Identification of SH3 Domain Proteins Interacting with the Cytoplasmic Tail of the A Disintegrin and Metalloprotease 10 (ADAM10). PLoS ONE, 2014, 9, e102899.	2.5	26

#	Article	IF	CITATIONS
91	Generation of Soluble <scp>NKG</scp> 2 <scp>D</scp> Ligands: Proteolytic Cleavage, Exosome Secretion and Functional Implications. Scandinavian Journal of Immunology, 2013, 78, 120-129.	2.7	163
92	Regulatory functions of $\hat{1}^{\hat{3}}\hat{1}$ T cells. International Immunopharmacology, 2013, 16, 382-387.	3.8	31
93	Defining the nature of human γδT cells: a biographical sketch of the highly empathetic. Cellular and Molecular Immunology, 2013, 10, 21-29.	10.5	139
94	Shedding of endogenous MHC class lâ€related chain molecules A and B from different human tumor entities: Heterogeneous involvement of the "a disintegrin and metalloproteases―10 and 17. International Journal of Cancer, 2013, 133, 1557-1566.	5.1	170
95	Can peripheral blood Ĵ³Ĵ´ T cells predict osteonecrosis of the jaw? An immunological perspective on the adverse drug effects of aminobisphosphonate therapy. Journal of Bone and Mineral Research, 2013, 28, 728-735.	2.8	63
96	Human Vδ2 versus non-Vδ2 γδT cells in antitumor immunity. OncoImmunology, 2013, 2, e23304.	4.6	58
97	The Multifunctionality of Human Vγ9Vδ2 γδT Cells: Clonal Plasticity or Distinct Subsets?. Scandinavian Journal of Immunology, 2012, 76, 213-222.	2.7	60
98	Regulation of T cell activation by TLR ligands. European Journal of Cell Biology, 2011, 90, 582-592.	3.6	72
99	γδT-cells: cross-talk between innate and adaptive immunity. Cellular and Molecular Life Sciences, 2011, 68, 2331-2333.	5.4	34
100	Modulation of Î ³ δT cell responses by TLR ligands. Cellular and Molecular Life Sciences, 2011, 68, 2357-2370.	5.4	110
101	Aminobisphosphonates and Toll-Like Receptor Ligands: Recruiting Vγ9Vδ2 T Cells for the Treatment of Hematologic Malignancy. Current Medicinal Chemistry, 2011, 18, 5206-5216.	2.4	17
102	Immune Suppression by γδT-cells as a Potential Regulatory Mechanism After Cancer Vaccination With IL-12 Secreting Dendritic Cells. Journal of Immunotherapy, 2010, 33, 40-52.	2.4	42
103	Differential but Direct Abolishment of Human Regulatory T Cell Suppressive Capacity by Various TLR2 Ligands. Journal of Immunology, 2010, 184, 4733-4740.	0.8	66
104	Human gamma delta T lymphocytes for immunotherapeutic strategies against cancer. F1000 Medicine Reports, 2010, 2, .	2.9	9
105	gammadelta T-cells: basic features and potential role in vasculitis. Clinical and Experimental Rheumatology, 2010, 28, 104-9.	0.8	1
106	Toll-like Receptors 3 and 7 Agonists Enhance Tumor Cell Lysis by Human Î ³ δT Cells. Cancer Research, 2009, 69, 8710-8717.	0.9	90
107	Tollâ€Like Receptor Expression and Function in Subsets of Human γδT Lymphocytes. Scandinavian Journal of Immunology, 2009, 70, 245-255.	2.7	80
108	Small Molecules for the Activation of Human γ δ T Cell Responses Against Infection. Recent Patents on Anti-infective Drug Discovery, 2008, 3, 1-9.	0.8	21

#	Article	IF	CITATIONS
109	Lysis of a Broad Range of Epithelial Tumour Cells by Human <i>γδ</i> T Cells: Involvement of NKG2D ligands and Tâ€cell Receptor―versus NKG2Dâ€dependent Recognition. Scandinavian Journal of Immunology, 2007, 66, 320-328.	2.7	212
110	Direct Costimulatory Effect of TLR3 Ligand Poly(I:C) on Human γδT Lymphocytes. Journal of Immunology, 2006, 176, 1348-1354.	0.8	150
111	Activation of Vγ9Vδ2 T Cells by NKG2D. Journal of Immunology, 2005, 175, 2144-2151.	0.8	282
112	Characterization of Tumor Reactivity of Human Vγ9Vδ2 γδT Cells In Vitro and in SCID Mice In Vivo. Journal of Immunology, 2004, 173, 6767-6776.	0.8	164
113	Why not work on T and NK cells in the Kunkel laboratory?. Lupus, 2003, 12, 195-199.	1.6	0
114	Differentiation of Resting Human Peripheral Blood γδT Cells toward Th1- or Th2-Phenotype. Cellular Immunology, 2001, 212, 110-117.	3.0	131
115	Staurosporine and conventional anticancer drugs induce overlapping, yet distinct pathways of apoptosis and caspase activation. Oncogene, 2001, 20, 1193-1202.	5.9	140
116	Cell-surface expression of transrearranged Vγ-Cβ T-cell receptor chains in healthy donors and in ataxia telangiectasia patients. British Journal of Haematology, 2000, 109, 201-210.	2.5	15
117	Regulation of activation-induced cell death of mature T-lymphocyte populations. Cell and Tissue Research, 2000, 301, 85-99.	2.9	79
118	Role of apoptosis in cardiac allograft vasculopathy. Clinical Research in Cardiology, 2000, 89, IX21-IX23.	1.1	3
119	?? T cells, their T cell receptor usage and role in human diseases. Seminars in Immunopathology, 1999, 21, 55-76.	4.0	20
120	gamma delta T cells, their T cell receptor usage and role in human diseases. Seminars in Immunopathology, 1999, 21, 55-75.	4.0	18
121	Increase in Vδ1+ γδT cells in the peripheral blood and bone marrow as a selective feature of HIV-1 but not other virus infections. British Journal of Haematology, 1998, 100, 728-734.	2.5	35
122	Antigen-Induced Death of T-Lymphocytes. Fetal and Pediatric Pathology, 1998, 18, 329-354.	0.3	1
123	Analysis of the TCR Vgamma repertoire in healthy donors and HIV-1- infected individuals. International Immunology, 1998, 10, 1067-1075.	4.0	51
124	Identification of the complete expressed human TCR V gamma repertoire by flow cytometry. International Immunology, 1997, 9, 1065-1072.	4.0	57
125	Differential role of tyrosine phosphorylation in the induction of apoptosis in T cell clones via CD95 or the TCR/CD3-complex. Cell Death and Differentiation, 1997, 4, 403-412.	11.2	8
126	Clonal expansion of Vgamma3/Vdelta3-expressing gammadelta T cells in an HIV-1/2-negative patient with CD4 T-cell deficiency. British Journal of Haematology, 1997, 96, 266-271.	2.5	18

#	Article	IF	CITATIONS
127	Comparative analysis of αβ and γδT cell activation byMycobacterium tuberculosis and isopentenyl pyrophosphate. European Journal of Immunology, 1997, 27, 952-956.	2.9	66
128	Antigen-induced death of T-Lymphocytes. Frontiers in Bioscience - Landmark, 1997, 2, d61-77.	3.0	45
129	Activation of human Î ³ δT-cell by heat-treated mistletoe plant extracts. Immunology Letters, 1996, 52, 69-72.	2.5	26
130	Mycobacteria-reactive γδT cells in HIV-infected individuals: lack of Vγ9 cell responsiveness is due to deficiency of antigen-specific CD4 T helper type 1 cells. European Journal of Immunology, 1996, 26, 557-562.	2.9	49
131	Clonal expansion of γδT cells expressing two distinct Tâ€eell receptors. British Journal of Haematology, 1996, 94, 62-64.	2.5	14
132	Rapid quantification of lymphocyte subsets in heterogeneous cell populations by flow cytometry. Cytometry, 1994, 16, 152-159.	1.8	102
133	T cell receptor γδ repertoire in HIV-1-infected individuals. European Journal of Immunology, 1994, 24, 3044-3049.	2.9	72
134	Primary activation of V gamma 9-expressing gamma delta T cells by Mycobacterium tuberculosis. Requirement for Th1-type CD4 T cell help and inhibition by IL-10. Journal of Immunology, 1994, 152, 4984-92.	0.8	76
135	Life and death of a superantigen-reactive human CD4+ T cell clone: staphylococcal enterotoxins induce death by apoptosis but simultaneously trigger a proliferative response in the presence of HLA-DR+ antigen-presenting cells. International Immunology, 1992, 4, 1381-1388.	4.0	61
136	Immunological studies of γδt cells in a case of large granular lymphocyte (LGL) leukemia: Leukemic γδ+ T cells are resistant to growth stimulation in vitro but respond to interferon-α treatment in vivo. Leukemia Research, 1992, 16, 1087-1095.	0.8	21
137	T cell receptor/CD3-signaling induces death by apoptosis in human T cell receptor gamma delta + T cells. Journal of Immunology, 1991, 146, 35-9.	0.8	142