
Toshihiko Yada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4387753/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	D-Allulose cooperates with glucagon-like peptide-1 and activates proopiomelanocortin neurons in the arcuate nucleus and central injection inhibits feeding in mice. Biochemical and Biophysical Research Communications, 2022, 613, 159-165.	1.0	5
2	TRPV1-Mediated Sensing of Sodium and Osmotic Pressure in POMC Neurons in the Arcuate Nucleus of the Hypothalamus. Nutrients, 2022, 14, 2600.	1.7	2
3	Gastrointestinal Distension by Pectin-Containing Carbonated Solution Suppresses Food Intake and Enhances Glucose Tolerance via GLP-1 Secretion and Vagal Afferent Activation. Frontiers in Endocrinology, 2021, 12, 676869.	1.5	10
4	Onion component, isoalliin, stimulates feeding and activates the arcuate nucleus neuropeptide Y, ghrelin- and Ninjin'yoeito-responsive neurons. Neuropeptides, 2021, 89, 102180.	0.9	7
5	Status of ghrelin as an islet hormone and paracrine/autocrine regulator of insulin secretion. Peptides, 2021, 148, 170681.	1.2	3
6	Ninjin'yoeito Targets Distinct Ca2+ Channels to Activate Ghrelin-Responsive vs. Unresponsive NPY Neurons in the Arcuate Nucleus. Frontiers in Nutrition, 2020, 7, 104.	1.6	5
7	Lavender Oil Reduces Depressive Mood in Healthy Individuals and Enhances the Activity of Single Oxytocin Neurons of the Hypothalamus Isolated from Mice: A Preliminary Study. Evidence-based Complementary and Alternative Medicine, 2020, 2020, 1-9.	0.5	12
8	The liver–brain–gut neural arc maintains the Treg cell niche in the gut. Nature, 2020, 585, 591-596.	13.7	126
9	Relay of peripheral oxytocin to central oxytocin neurons via vagal afferents for regulating feeding. Biochemical and Biophysical Research Communications, 2019, 519, 553-558.	1.0	20
10	Central Glucagon-like Peptide-1 Receptor Signaling via Brainstem Catecholamine Neurons Counteracts Hypertension in Spontaneously Hypertensive Rats. Scientific Reports, 2019, 9, 12986.	1.6	25
11	Islet β-cell-produced NUCB2/nesfatin-1 maintains insulin secretion and glycemia along with suppressing UCP-2 in β-cells. Journal of Physiological Sciences, 2019, 69, 733-739.	0.9	14
12	Ninjin-yoeito activates ghrelin-responsive and unresponsive NPY neurons in the arcuate nucleus and counteracts cisplatin-induced anorexia. Neuropeptides, 2019, 75, 58-64.	0.9	31
13	Activation of AMPK-Regulated CRH Neurons in the PVH is Sufficient and Necessary to Induce Dietary Preference for Carbohydrate over Fat. Cell Reports, 2018, 22, 706-721.	2.9	50
14	GLP-1 receptor agonist liraglutide exerts central action to induce β-cell proliferation through medulla to vagal pathway in mice. Biochemical and Biophysical Research Communications, 2018, 499, 618-625.	1.0	9
15	GLP-1 release and vagal afferent activation mediate the beneficial metabolic and chronotherapeutic effects of D-allulose. Nature Communications, 2018, 9, 113.	5.8	111
16	Protective role of AgRP neuron's PDK1 against salt-induced hypertension. Biochemical and Biophysical Research Communications, 2018, 500, 910-916.	1.0	5
17	Neuropeptide oxytocin enhances μ opioid receptor signaling as a positive allosteric modulator. Journal of Pharmacological Sciences, 2018, 137, 67-75.	1.1	52
18	Short-chain fatty acids suppress food intake by activating vagal afferent neurons. Journal of Nutritional Biochemistry, 2018, 57, 130-135.	1.9	119

#	Article	IF	CITATIONS
19	Suprachiasmatic vasopressin to paraventricular oxytocin neurocircuit in the hypothalamus relays light reception to inhibit feeding behavior. American Journal of Physiology - Endocrinology and Metabolism, 2018, 315, E478-E488.	1.8	23
20	The effects of adjunctive intranasal oxytocin in patients with schizophrenia. Postgraduate Medicine, 2018, 130, 122-128.	0.9	18
21	Central insulin action induces activation of paraventricular oxytocin neurons to release oxytocin into circulation. Scientific Reports, 2018, 8, 10415.	1.6	17
22	New insight into GABAergic neurons in the hypothalamic feeding regulation. Journal of Physiological Sciences, 2018, 68, 717-722.	0.9	41
23	Complexity of Stomach–Brain Interaction Induced by Molecular Hydrogen in Parkinson's Disease Model Mice. Neurochemical Research, 2017, 42, 2658-2665.	1.6	19
24	Glucagon-like peptide-1 and insulin synergistically activate vagal afferent neurons. Neuropeptides, 2017, 65, 77-82.	0.9	20
25	Adiponectin at physiological level glucose-independently enhances inhibitory postsynaptic current onto NPY neurons in the hypothalamic arcuate nucleus. Neuropeptides, 2017, 65, 1-9.	0.9	17
26	PDK1-FoxO1 pathway in AgRP neurons of arcuate nucleus promotes bone formation via GHRH-GH-IGF1 axis. Molecular Metabolism, 2017, 6, 428-439.	3.0	15
27	Fibroblast growth factor 21, assisted by elevated glucose, activates paraventricular nucleus NUCB2/Nesfatin-1 neurons to produce satiety under fed states. Scientific Reports, 2017, 7, 45819.	1.6	33
28	AAV-mediated IL-10 gene transfer counteracts inflammation in the hypothalamic arcuate nucleus and obesity induced by high-fat diet. Neuropeptides, 2017, 62, 87-92.	0.9	16
29	Endogenous α2A-Adrenoceptor–Operated Sympathoadrenergic Tones Attenuate Insulin Secretion via cAMP/TRPM2 Signaling. Diabetes, 2017, 66, 699-709.	0.3	29
30	Inhibition of Y1 receptor signaling improves islet transplant outcome. Nature Communications, 2017, 8, 490.	5.8	23
31	Involvement of thermosensitive TRP channels in energy metabolism. Journal of Physiological Sciences, 2017, 67, 549-560.	0.9	69
32	Plasticity of calcium-permeable AMPA glutamate receptors in Pro-opiomelanocortin neurons. ELife, 2017, 6, .	2.8	19
33	High-Fat Diet Augments VPAC1 Receptor-Mediated PACAP Action on the Liver, Inducing LAR Expression and Insulin Resistance. Journal of Diabetes Research, 2016, 2016, 1-10.	1.0	2
34	Sweet Taste Receptor Serves to Activate Glucose- and Leptin-Responsive Neurons in the Hypothalamic Arcuate Nucleus and Participates in Glucose Responsiveness. Frontiers in Neuroscience, 2016, 10, 502.	1.4	45
35	Potentiation of Glucose-stimulated Insulin Secretion by the GPR40–PLC–TRPC Pathway in Pancreatic β-Cells. Scientific Reports, 2016, 6, 25912.	1.6	58
36	Glucose level determines excitatory or inhibitory effects of adiponectin on arcuate POMC neuron activity and feeding. Scientific Reports, 2016, 6, 30796.	1.6	52

#	Article	IF	CITATIONS
37	Optogenetic activation of leptin- and glucose-regulated GABAergic neurons in dorsomedial hypothalamus promotes food intake via inhibitory synaptic transmission to paraventricular nucleus of hypothalamus. Molecular Metabolism, 2016, 5, 709-715.	3.0	31
38	Neural effects of gut―and brainâ€derived glucagonâ€like peptideâ€1 and its receptor agonist. Journal of Diabetes Investigation, 2016, 7, 64-69.	1.1	82
39	Betatrophin expression is promoted in obese hyperinsulinemic type 2 but not type 1 diabetic mice. Endocrine Journal, 2016, 63, 611-619.	0.7	9
40	Caspase-1 deficiency promotes high-fat diet-induced adipose tissue inflammation and the development of obesity. American Journal of Physiology - Endocrinology and Metabolism, 2016, 311, E881-E890.	1.8	15
41	Paraventricular NUCB2/Nesfatin-1 Supports Oxytocin and Vasopressin Neurons to Control Feeding Behavior and Fluid Balance in Male Mice. Endocrinology, 2016, 157, 2322-2332.	1.4	37
42	Fasted/fed states regulate postsynaptic hub protein DYNLL2 and glutamatergic transmission in oxytocin neurons in the hypothalamic paraventricular nucleus. Neuropeptides, 2016, 56, 115-123.	0.9	13
43	Total gastrectomy-induced reductions in food intake and weight are counteracted by rikkunshito by attenuating glucagon-like peptide-1 elevation in rats. Surgery, 2016, 159, 1342-1350.	1.0	8
44	Immunoproteasome subunit LMP7 Deficiency Improves Obesity and Metabolic Disorders. Scientific Reports, 2015, 5, 15883.	1.6	24
45	<i>N</i> -methyl- <scp>d</scp> -aspartate receptor coagonist <scp>d</scp> -serine suppresses intake of high-preference food. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 309, R561-R575.	0.9	17
46	The β-cell GHSR and downstream cAMP/TRPM2 signaling account for insulinostatic and glycemic effects of ghrelin. Scientific Reports, 2015, 5, 14041.	1.6	48
47	A novel insulinotropic mechanism of whole grainâ€derived γâ€oryzanol via the suppression of local dopamine <scp>D₂</scp> receptor signalling in mouse islet. British Journal of Pharmacology, 2015, 172, 4519-4534.	2.7	15
48	Arcuate Na ⁺ ,K ⁺ -ATPase senses systemic energy states and regulates feeding behavior through glucose-inhibited neurons. American Journal of Physiology - Endocrinology and Metabolism, 2015, 309, E320-E333.	1.8	31
49	Glucagon directly interacts with vagal afferent nodose ganglion neurons to induce Ca2+ signaling via glucagon receptors. Biochemical and Biophysical Research Communications, 2015, 456, 727-732.	1.0	16
50	Peripheral oxytocin activates vagal afferent neurons to suppress feeding in normal and leptin-resistant mice: a route for ameliorating hyperphagia and obesity. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 308, R360-R369.	0.9	118
51	Partial Blockade of Kv2.1 Channel Potentiates GLP-1's Insulinotropic Effects in Islets and Reduces Its Dose Required for Improving Glucose Tolerance in Type 2 Diabetic Male Mice. Endocrinology, 2015, 156, 114-123.	1.4	8
52	Paraventricular NUCB2/nesfatin-1 is directly targeted by leptin and mediates its anorexigenic effect. Biochemical and Biophysical Research Communications, 2015, 456, 913-918.	1.0	32
53	Ghrelin ameliorates catabolic conditions and respiratory dysfunction in a chronic obstructive pulmonary disease model of chronic cigarette smoke-exposed rats. European Journal of Pharmacology, 2015, 755, 88-94.	1.7	14
54	Nasal Oxytocin Administration Reduces Food Intake without Affecting Locomotor Activity and Glycemia with c-Fos Induction in Limited Brain Areas. Neuroendocrinology, 2015, 101, 35-44.	1.2	66

#	Article	IF	CITATIONS
55	Chronic exposure to cigarette smoke causes extrapulmonary abnormalities in rats. Environmental Toxicology and Pharmacology, 2015, 39, 864-870.	2.0	19
56	Ghrelin counteracts insulin-induced activation of vagal afferent neurons via growth hormone secretagogue receptor. Neuropeptides, 2015, 52, 55-60.	0.9	7
57	Neuropeptide Y and α-melanocyte-stimulating hormone reciprocally regulate nesfatin-1 neurons in the paraventricular nucleus of the hypothalamus. NeuroReport, 2014, 25, 1453-1458.	0.6	16
58	Involvement of cAMP/EPAC/TRPM2 Activation in Glucose- and Incretin-Induced Insulin Secretion. Diabetes, 2014, 63, 3394-3403.	0.3	55
59	Oxytocinergic circuit from paraventricular and supraoptic nuclei to arcuate POMC neurons in hypothalamus. FEBS Letters, 2014, 588, 4404-4412.	1.3	78
60	Serum ghrelin levels partially recover with the recovery of appetite and food intake after total gastrectomy. Surgery Today, 2014, 44, 2131-2137.	0.7	15
61	Chronic exposure to valproic acid promotes insulin release, reduces KATP channel current and does not affect Ca2+ signaling in mouse islets. Journal of Physiological Sciences, 2014, 64, 77-83.	0.9	9
62	Endogenous GLP-1 acts on paraventricular nucleus to suppress feeding: Projection from nucleus tractus solitarius and activation of corticotropin-releasing hormone, nesfatin-1 and oxytocin neurons. Biochemical and Biophysical Research Communications, 2014, 451, 276-281.	1.0	83
63	Chronic phencyclidine treatment induces long-lasting glutamatergic activation of VTA dopamine neurons. Neuroscience Letters, 2014, 564, 72-77.	1.0	7
64	Rikkunshito and isoliquiritigenin counteract 5-HT-induced 2C receptor-mediated activation of pro-opiomelanocortin neurons in the hypothalamic arcuate nucleus. Neuropeptides, 2013, 47, 225-230.	0.9	13
65	Paraventricular NUCB2/nesfatin-1 rises in synchrony with feeding suppression during early light phase in rats. Biochemical and Biophysical Research Communications, 2013, 434, 434-438.	1.0	28
66	Paraventricular nucleus nesfatin-1 neurons are regulated by pituitary adenylate cyclase-activating polypeptide (PACAP). Neuroscience Letters, 2013, 551, 39-42.	1.0	5
67	Pancreatic polypeptide and peptide YY3–36 induce Ca2+ signaling in nodose ganglion neurons. Neuropeptides, 2013, 47, 19-23.	0.9	26
68	Insulin Activates Vagal Afferent Neurons Including those Innervating Pancreas via Insulin Cascade and Ca2+ Influx: Its Dysfunction in IRS2-KO Mice with Hyperphagic Obesity. PLoS ONE, 2013, 8, e67198.	1.1	30
69	Brain-derived neurotrophic factor in VMH as the causal factor for and therapeutic tool to treat visceral adiposity and hyperleptinemia in type 2 diabetic Goto–Kakizaki rats. Frontiers in Synaptic Neuroscience, 2013, 5, 7.	1.3	13
70	Role of NUCB2/nesfatin-1 in Glucose Control: Diverse Functions in Islets, Adipocytes and Brain. Current Pharmaceutical Design, 2013, 19, 6960-6965.	0.9	16
71	Islet β-Cell Ghrelin Signaling for Inhibition of Insulin Secretion. Methods in Enzymology, 2012, 514, 317-331.	0.4	13
72	Neurohormones, Rikkunshito and Hypothalamic Neurons Interactively Control Appetite and Anorexia. Current Pharmaceutical Design, 2012, 18, 4854-4864.	0.9	18

#	Article	IF	CITATIONS
73	Glucose and insulin induce Ca2+ signaling in nesfatin-1 neurons in the hypothalamic paraventricular nucleus. Biochemical and Biophysical Research Communications, 2012, 420, 811-815.	1.0	29
74	Exogenous and endogenous ghrelin counteracts GLPâ€1 action to stimulate cAMP signaling and insulin secretion in islet βâ€cells. FEBS Letters, 2012, 586, 2555-2562.	1.3	35
75	Vagal afferents sense meal-associated gastrointestinal and pancreatic hormones: Mechanism and physiological role. Neuropeptides, 2012, 46, 291-297.	0.9	28
76	Arcuate NPY neurons sense and integrate peripheral metabolic signals to control feeding. Neuropeptides, 2012, 46, 315-319.	0.9	76
77	Ghrelin's Novel Signaling in Islet β-Cells to Inhibit Insulin Secretion and Its Blockade As a Promising Strategy to Treat Type 2 Diabetes. , 2012, , 51-71.		Ο
78	AMP-activated protein kinase activates neuropeptide Y neurons in the hypothalamic arcuate nucleus to increase food intake in rats. Neuroscience Letters, 2011, 499, 194-198.	1.0	44
79	Peripheral oxytocin treatment ameliorates obesity by reducing food intake and visceral fat mass. Aging, 2011, 3, 1169-1177.	1.4	185
80	PDK1-Foxo1 in Agouti-Related Peptide Neurons Regulates Energy Homeostasis by Modulating Food Intake and Energy Expenditure. PLoS ONE, 2011, 6, e18324.	1.1	30
81	Nesfatin-1 enhances glucose-induced insulin secretion by promoting Ca2+ influx through L-type channels in mouse islet .BETAcells. Endocrine Journal, 2011, 58, 305-313.	0.7	122
82	Postoperative Weight Loss Does Not Resolve After Esophagectomy Despite Normal Serum Ghrelin Levels. Annals of Thoracic Surgery, 2011, 91, 1032-1037.	0.7	19
83	Ghrelin Attenuates cAMP-PKA Signaling to Evoke Insulinostatic Cascade in Islet β-Cells. Diabetes, 2011, 60, 2315-2324.	0.3	56
84	Insulin suppresses ghrelin-induced calcium signaling in neuropeptide Y neurons of the hypothalamic arcuate nucleus. Aging, 2011, 3, 1092-1097.	1.4	31
85	Intra-Islet PACAP Protects Pancreatic β-Cells Against Glucotoxicity and Lipotoxicity. Journal of Molecular Neuroscience, 2010, 42, 404-410.	1.1	26
86	Roles of ghrelin in left-ventricular remodelling after acute myocardial infarction. Heart Asia, 2010, 2, 1-4.	1.1	4
87	PDK-1/FoxO1 pathway in POMC neurons regulates <i>Pomc</i> expression and food intake. American Journal of Physiology - Endocrinology and Metabolism, 2010, 298, E787-E798.	1.8	59
88	Reconstruction-Dependent Recovery from Anorexia and Time-Related Recovery of Regulatory Ghrelin System in Gastrectomized Rats. International Journal of Peptides, 2010, 2010, 1-10.	0.7	8
89	Stressor-responsive central nesfatin-1 activates corticotropin-releasing hormone, noradrenaline and serotonin neurons and evokes hypothalamic-pituitary-adrenal axis. Aging, 2010, 2, 775-784.	1.4	109
90	Nesfatin-1-Regulated Oxytocinergic Signaling in the Paraventricular Nucleus Causes Anorexia through a Leptin-Independent Melanocortin Pathway. Cell Metabolism, 2009, 10, 355-365.	7.2	283

#	Article	IF	CITATIONS
91	Nesfatin-1 evokes Ca2+ signaling in isolated vagal afferent neurons via Ca2+ influx through N-type channels. Biochemical and Biophysical Research Communications, 2009, 390, 958-962.	1.0	73
92	Chrelin is a physiological regulator of insulin release in pancreatic islets and glucose homeostasis. , 2008, 118, 239-249.		146
93	Neuropeptide W in the rat pancreas: Potentiation of glucose-induced insulin release and Ca2+ influx through L-type Ca2+ channels in β-cells and localization in islets. Regulatory Peptides, 2008, 145, 153-158.	1.9	16
94	Cannabinoids inhibit insulin secretion and cytosolic Ca2+ oscillation in islet β-cells via CB1 receptors. Regulatory Peptides, 2008, 145, 49-53.	1.9	105
95	Synaptic interaction between ghrelin- and ghrelin-containing neurons in the rat hypothalamus. Regulatory Peptides, 2008, 145, 122-127.	1.9	14
96	Ghrelin raises [Ca2+]i via AMPK in hypothalamic arcuate nucleus NPY neurons. Biochemical and Biophysical Research Communications, 2008, 366, 388-392.	1.0	112
97	Ghrelin Regulates Insulin Release and Glycemia: Physiological Role and Therapeutic Potential. Current Diabetes Reviews, 2008, 4, 18-23.	0.6	79
98	Nesfatin-1 Neurons in Paraventricular and Supraoptic Nuclei of the Rat Hypothalamus Coexpress Oxytocin and Vasopressin and Are Activated by Refeeding. Endocrinology, 2008, 149, 1295-1301.	1.4	226
99	Sub-chronic stimulation of glucocorticoid receptor impairs and mineralocorticoid receptor protects cytosolic Ca2+ responses to glucose in pancreatic Î ² -cells. Journal of Endocrinology, 2008, 197, 221-229.	1.2	18
100	Markedly Reduced White Adipose Tissue and Increased Insulin Sensitivity in Adcyap1-Deficient Mice. Journal of Pharmacological Sciences, 2008, 107, 41-48.	1.1	47
101	Endogenous prolactin-releasing peptide regulates food intake in rodents. Journal of Clinical Investigation, 2008, 118, 4014-4024.	3.9	77
102	Leptin transiently antagonizes ghrelin and long-lastingly orexin in regulation of Ca2+ signaling in neuropeptide Y neurons of the arcuate nucleus. World Journal of Gastroenterology, 2008, 14, 6347.	1.4	11
103	Ghrelin Uses Gαi2 and Activates Voltage-Dependent K+ Channels to Attenuate Glucose-Induced Ca2+ Signaling and Insulin Release in Islet β-Cells. Diabetes, 2007, 56, 2319-2327.	0.3	153
104	PACAP in the Glucose and Energy Homeostasis: Physiological Role and Therapeutic Potential. Current Pharmaceutical Design, 2007, 13, 1105-1112.	0.9	46
105	Leptin Suppresses Ghrelin-Induced Activation of Neuropeptide Y Neurons in the Arcuate Nucleus via Phosphatidylinositol 3-Kinase- and Phosphodiesterase 3-Mediated Pathway. Endocrinology, 2007, 148, 2251-2263.	1.4	111
106	Resistin induces insulin resistance in pancreatic islets to impair glucose-induced insulin release. Biochemical and Biophysical Research Communications, 2007, 353, 1046-1051.	1.0	65
107	Protein arginine methylation regulates insulin signaling in L6 skeletal muscle cells. Biochemical and Biophysical Research Communications, 2007, 364, 1015-1021.	1.0	42
108	Activation of cholecystokinin neurons in the dorsal pallium of the telencephalon is indispensable for the acquisition of chick imprinting behavior. Journal of Neurochemistry, 2007, 102, 1645-1657.	2.1	18

#	Article	IF	CITATIONS
109	Galanin-Like Peptide Stimulates Food Intake via Activation of Neuropeptide Y Neurons in the Hypothalamic Dorsomedial Nucleus of the Rat. Endocrinology, 2006, 147, 1744-1752.	1.4	39
110	Pituitary adenylate cyclase-activating polypeptide neurons of the ventromedial hypothalamus project to the midbrain central gray. NeuroReport, 2006, 17, 221-224.	0.6	10
111	Blockade of Pancreatic Islet-Derived Ghrelin Enhances Insulin Secretion to Prevent High-Fat Diet-Induced Glucose Intolerance. Diabetes, 2006, 55, 3486-3493.	0.3	220
112	Identification of N-arachidonylglycine, U18666A, and 4-androstene-3,17-dione as novel insulin Secretagogues. Biochemical and Biophysical Research Communications, 2005, 333, 778-786.	1.0	31
113	Leptin potentiates ADP-induced [Ca2+]i increase via JAK2 and tyrosine kinases in a megakaryoblast cell line. Diabetes Research and Clinical Practice, 2005, 70, 209-216.	1.1	18
114	Galanin-like peptide and ghrelin increase cytosolic Ca2+ in neurons containing growth hormone-releasing hormone in the arcuate nucleus. Regulatory Peptides, 2005, 126, 85-89.	1.9	20
115	Endogenous Ghrelin in Pancreatic Islets Restricts Insulin Release by Attenuating Ca2+ Signaling in Â-Cells: Implication in the Glycemic Control in Rodents. Diabetes, 2004, 53, 3142-3151.	0.3	323
116	Orexins (hypocretins) directly interact with neuropeptide Y, POMC and glucose-responsive neurons to regulate Ca2+ signaling in a reciprocal manner to leptin: orexigenic neuronal pathways in the mediobasal hypothalamus. European Journal of Neuroscience, 2004, 19, 1524-1534.	1.2	220
117	Cytosolic Ca2+ responses to sub-picomolar and nanomolar PACAP in pancreatic Î ² -cells are mediated by VPAC2 and PAC1 receptors. Regulatory Peptides, 2004, 123, 147-153.	1.9	20
118	PACAP deficient mice display reduced carbohydrate intake and PACAP activates NPY-containing neurons in the rat hypothalamic arcuate nucleus. Neuroscience Letters, 2004, 370, 252-256.	1.0	61
119	Ghrelin Directly Interacts With Neuropeptide-Y-Containing Neurons in the Rat Arcuate Nucleus: Ca2+ Signaling via Protein Kinase A and N-Type Channel-Dependent Mechanisms and Cross-Talk With Leptin and Orexin. Diabetes, 2003, 52, 948-956.	0.3	337
120	Activation of orexin neurones after noxious but not conditioned fear stimuli in rats. NeuroReport, 2002, 13, 1351-1353.	0.6	57
121	Ghrelin Is Present in Pancreatic Â-Cells of Humans and Rats and Stimulates Insulin Secretion. Diabetes, 2002, 51, 124-129.	0.3	513
122	Glucagon-like peptide-1 evokes action potentials and increases cytosolic Ca2+ in rat nodose ganglion neurons. Autonomic Neuroscience: Basic and Clinical, 2002, 102, 39-44.	1.4	87
123	Glucose-insensitivity induced by Ca2+ toxicity in islet β-cells and its prevention by PACAP. Peptides, 2002, 23, 135-142.	1.2	10
124	Lowering glucose concentrations increases cytosolic Ca2+ in orexin neurons of the rat lateral hypothalamus. Neuroscience Letters, 2001, 309, 165-168.	1.0	65
125	Orexin-a activates phospholipase C- and protein kinase C-mediated Ca2+ signaling in dopamine neurons of the ventral tegmental area. NeuroReport, 2001, 12, 1885-1889.	0.6	124
126	Free Radical-Mediated Tolbutamide Desensitization of K+ATP Channels in Rat Pancreatic .BETAcells Endocrine Journal, 2001, 48, 337-344.	0.7	1

#	Article	IF	CITATIONS
127	Methamphetamine induces cytosolic Ca2+ oscillations in the VTA dopamine neurons. NeuroReport, 2000, 11, 1057-1061.	0.6	22
128	Ca ²⁺ Oscillations in Response to Methamphetamine in Dopamine Neurons of the Ventral Tegmental Area in Rats Subchronically Treated with This Drug. Annals of the New York Academy of Sciences, 2000, 914, 316-322.	1.8	3
129	Orexin-induced hyperlocomotion and stereotypy are mediated by the dopaminergic system11Published on the World Wide Web on 27 June 2000 Brain Research, 2000, 873, 181-187.	1.1	338
130	Functional Significance of Colocalization of PACAP and Catecholamine in Nerve Terminals. Annals of the New York Academy of Sciences, 2000, 921, 211-217.	1.8	14
131	Insulinotropin PACAP Potentiates Insulin Action: Stimulation of Glucose Uptake in 3T3â€LI Adipocytes. Annals of the New York Academy of Sciences, 2000, 921, 473-477.	1.8	11
132	Diverse Effects of Hydrogen Peroxide on Cytosolic Ca2+ Homeostasis in Rat Pancreatic .BETAcells Cell Structure and Function, 2000, 25, 187-193.	0.5	24
133	Clucose-sensitive neurons in the rat arcuate nucleus contain neuropeptide Y. Neuroscience Letters, 1999, 264, 113-116.	1.0	187
134	The effect of leptin on feeding-regulating neurons in the rat hypothalamus. Neuroscience Letters, 1999, 264, 117-120.	1.0	61
135	Insulinotropin PACAP potentiates insulin-stimulated glucose uptake in 3T3 L1 cellsâ~†. Peptides, 1999, 20, 943-948.	1.2	33
136	Nitric Oxide Induces Apoptosis via Ca2+-Dependent Processes in the Pancreatic .BETAcell Line MIN6 Cell Structure and Function, 1999, 24, 451-455.	0.5	31
137	PACAP Increases Cytosolic Calcium in Vasopressin Neurons: Synergism with Noradrenalineaa. Annals of the New York Academy of Sciences, 1998, 865, 427-430.	1.8	5
138	Distribution and Ultrastructural Localization of PACAP Receptors in the Rat Pancreatic Isletsa. Annals of the New York Academy of Sciences, 1998, 865, 438-440.	1.8	7
139	PACAP and GLP-1 Protect Islet beta-Cells against Ca2+ Toxicity Induced by High K+a. Annals of the New York Academy of Sciences, 1998, 865, 445-450.	1.8	2
140	[Ca ²⁺] _i -reducing action of cAMP in rat pancreatic β-cells: involvement of thapsigargin-sensitive stores. American Journal of Physiology - Cell Physiology, 1998, 274, C513-C521.	2.1	30
141	Pituitary adenylate cyclase-activating polypeptide (PACAP) is an islet substance serving as an intra-islet amplifier Of glucose-induced insulin secretion in rats. Journal of Physiology, 1997, 505, 319-328.	1.3	86
142	PACAP as Low as 10â^'13 M Raises Cytosolic Ca2+ Activity in Pancreatic B-Cells by Augmenting Ca2+ Influx Through L-Type Ca2+ Channels to Trigger Insulin Release. Advances in Experimental Medicine and Biology, 1997, 426, 165-171.	0.8	10
143	Current Status of PACAP as a Regulator of Insulin Secretion in Pancreatic Isletsa. Annals of the New York Academy of Sciences, 1996, 805, 329-340.	1.8	17
144	Pituitary adenylate cyclase activating polypeptide (PACAP) increases cytosolic-free calcium concentration in folliculo-stellate cells and somatotropes of rat pituitary. Peptides, 1993, 14, 235-239.	1.2	57

#	Article	IF	CITATIONS
145	Fluoroaluminates stimulate histamine secretion in the digitonin-permeabilized rat mast cells The Japanese Journal of Physiology, 1988, 38, 227-232.	0.9	7
146	Electrical activity of an intestinal epithelial cell line: Hyperpolarizing responses to intestinal secretagogues. Journal of Membrane Biology, 1984, 77, 33-44.	1.0	41
147	Calcium channel and calcium pump involved in oscillatory hyperpolarizing responses of Lâ€strain mouse fibroblasts. Journal of Physiology, 1982, 327, 449-461.	1.3	46
148	Oscillation of intracellular Cl- activity and membrane potential in cultured fibroblasts (L cells) The Japanese Journal of Physiology, 1981, 31, 609-612.	0.9	2