Timothy P Lodge

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/438773/publications.pdf

Version: 2024-02-01

324 papers

23,185 citations

9234 74 h-index 135 g-index

329 all docs

329 docs citations

times ranked

329

16208 citing authors

#	Article	IF	CITATIONS
1	Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistorsÂonÂplastic. Nature Materials, 2008, 7, 900-906.	13.3	1,077
2	Multiblock Polymers: Panacea or Pandora's Box?. Science, 2012, 336, 434-440.	6.0	930
3	Electrolyteâ€Gated Transistors for Organic and Printed Electronics. Advanced Materials, 2013, 25, 1822-1846.	11.1	797
4	Polymer Chemistry. , 0, , .		770
5	Self-Concentrations and Effective Glass Transition Temperatures in Polymer Blends. Macromolecules, 2000, 33, 5278-5284.	2.2	548
6	Block Copolymers: Past Successes and Future Challenges. Macromolecular Chemistry and Physics, 2003, 204, 265-273.	1.1	516
7	Multicompartment Block Polymer Micelles. Macromolecules, 2012, 45, 2-19.	2.2	436
8	lon Gel Gated Polymer Thin-Film Transistors. Journal of the American Chemical Society, 2007, 129, 4532-4533.	6.6	422
9	A Unique Platform for Materials Design. Science, 2008, 321, 50-51.	6.0	407
10	Self-Assembly of Block Copolymer Micelles in an Ionic Liquid. Journal of the American Chemical Society, 2006, 128, 2745-2750.	6.6	400
11	"Cut and Stick―Rubbery Ion Gels as High Capacitance Gate Dielectrics. Advanced Materials, 2012, 24, 4457-4462.	11.1	383
12	The Full Phase Behavior for Block Copolymers in Solvents of Varying Selectivity. Macromolecules, 2002, 35, 4707-4717.	2.2	359
13	Phase Behavior of a Block Copolymer in Solvents of Varying Selectivity. Macromolecules, 2000, 33, 5918-5931.	2.2	340
14	Ion Gel-Gated Polymer Thin-Film Transistors: Operating Mechanism and Characterization of Gate Dielectric Capacitance, Switching Speed, and Stability. Journal of Physical Chemistry C, 2009, 113, 8972-8981.	1.5	325
15	Thermoreversible Gelation of Aqueous Methylcellulose Solutions. Macromolecules, 1999, 32, 7070-7077.	2.2	316
16	Polymeric Bicontinuous Microemulsions. Physical Review Letters, 1997, 79, 849-852.	2.9	300
17	Ion Gels by Self-Assembly of a Triblock Copolymer in an Ionic Liquidâ€. Journal of Physical Chemistry B, 2007, 111, 4645-4652.	1.2	288
18	High-Modulus, High-Conductivity Nanostructured Polymer Electrolyte Membranes via Polymerization-Induced Phase Separation. Nano Letters, 2014, 14, 122-126.	4.5	274

#	Article	IF	Citations
19	Simultaneous, Segregated Storage of Two Agents in a Multicompartment Micelle. Journal of the American Chemical Society, 2005, 127, 17608-17609.	6.6	249
20	Reconciliation of the Molecular Weight Dependence of Diffusion and Viscosity in Entangled Polymers. Physical Review Letters, 1999, 83, 3218-3221.	2.9	231
21	Solution Processable, Electrochromic Ion Gels for Sub-1 V, Flexible Displays on Plastic. Chemistry of Materials, 2015, 27, 1420-1425.	3.2	219
22	Sphere, Cylinder, and Vesicle Nanoaggregates in Poly(styrene-b-isoprene) Diblock Copolymer Solutions. Macromolecules, 2006, 39, 1199-1208.	2.2	211
23	Solution-Processable Electrochemiluminescent Ion Gels for Flexible, Low-Voltage, Emissive Displays on Plastic. Journal of the American Chemical Society, 2014, 136, 3705-3712.	6.6	204
24	Synthesis and Gas Separation Performance of Triblock Copolymer Ion Gels with a Polymerized Ionic Liquid Mid-Block. Macromolecules, 2011, 44, 1732-1736.	2.2	203
25	Multicolored, Low-Power, Flexible Electrochromic Devices Based on Ion Gels. ACS Applied Materials & Samp; Interfaces, 2016, 8, 6252-6260.	4.0	202
26	Two calorimetric glass transitions do not necessarily indicate immiscibility: The case of PEO/PMMA. Journal of Polymer Science, Part B: Polymer Physics, 2006, 44, 756-763.	2.4	183
27	Ionic Conductivity, Capacitance, and Viscoelastic Properties of Block Copolymer-Based Ion Gels. Macromolecules, 2011, 44, 940-949.	2.2	183
28	Thermoreversible Ion Gels with Tunable Melting Temperatures from Triblock and Pentablock Copolymers. Macromolecules, 2008, 41, 167-174.	2.2	178
29	Mechanism of Molecular Exchange in Diblock Copolymer Micelles: Hypersensitivity to Core Chain Length. Physical Review Letters, 2010, 104, 047802.	2.9	177
30	High Toughness, High Conductivity Ion Gels by Sequential Triblock Copolymer Self-Assembly and Chemical Cross-Linking. Journal of the American Chemical Society, 2013, 135, 9652-9655.	6.6	177
31	A thermoreversible ion gel by triblock copolymer self-assembly in an ionic liquid. Chemical Communications, 2007, , 2732.	2.2	174
32	Electrical Impedance of Spin-Coatable Ion Gel Films. Journal of Physical Chemistry B, 2011, 115, 3315-3321.	1.2	166
33	Model Bicontinuous Microemulsions in Ternary Homopolymer/Block Copolymer Blends. Journal of Physical Chemistry B, 1999, 103, 4814-4824.	1.2	159
34	Thermoreversible Supramacromolecular Ion Gels via Hydrogen Bonding. Macromolecules, 2008, 41, 5839-5844.	2.2	155
35	Phase Behavior of Block Copolymers in a Neutral Solvent. Macromolecules, 2003, 36, 816-822.	2.2	143
36	Mechanically Tunable, Readily Processable Ion Gels by Self-Assembly of Block Copolymers in Ionic Liquids. Accounts of Chemical Research, 2016, 49, 2107-2114.	7.6	138

#	Article	IF	Citations
37	Static and dynamic crossover in a critical polymer mixture. Physical Review Letters, 1990, 65, 1893-1896.	2.9	137
38	Lower Critical Solution Temperature (LCST) Phase Behavior of Poly(ethylene oxide) in Ionic Liquids. Journal of Physical Chemistry Letters, 2010, 1 , $1962-1966$.	2.1	129
39	Isotropic Lifshitz Behavior in Block Copolymer-Homopolymer Blends. Physical Review Letters, 1995, 75, 4429-4432.	2.9	112
40	Self-Consistent Calculations of Block Copolymer Solution Phase Behavior. Macromolecules, 1998, 31, 3556-3565.	2.2	112
41	Molecular Weight Distribution of Polystyrene Made by Anionic Polymerization. Macromolecules, 2000, 33, 5111-5115.	2.2	107
42	Efficient Formation of Multicompartment Hydrogels by Stepwise Self-Assembly of Thermoresponsive ABC Triblock Terpolymers. Journal of the American Chemical Society, 2012, 134, 10365-10368.	6.6	107
43	Diffusivity and Viscosity of Concentrated Hydrogenated Polybutadiene Solutions. Macromolecules, 2000, 33, 1747-1758.	2.2	105
44	Mesoporous Membrane Templated by a Polymeric Bicontinuous Microemulsion. Nano Letters, 2006, 6, 2354-2357.	4.5	104
45	Gelation Mechanism of Thermoreversible Supramacromolecular Ion Gels via Hydrogen Bonding. Macromolecules, 2009, 42, 5802-5810.	2.2	104
46	Micellization and Micellar Aggregation of Poly(ethylene- <i>alt</i> -propylene)- <i>b</i> -poly(ethylene) Tj ETQq0 2011, 44, 1635-1641.	0 0 rgBT /C 2.2	Overlock 10 Tf 103
47	Unusual Lower Critical Solution Temperature Phase Behavior of Poly(ethylene oxide) in Ionic Liquids. Macromolecules, 2012, 45, 3627-3633.	2.2	103
48	Introductory Lecture: Strategies for controlling intra- and intermicellar packing in block copolymer solutions: Illustrating the flexibility of the self-assembly toolbox. Faraday Discussions, 2005, 128, 1.	1.6	101
49	Phase Behavior and Ionic Conductivity of Concentrated Solutions of Polystyrene-Poly(ethylene oxide) Diblock Copolymers in an Ionic Liquid. ACS Applied Materials & Interfaces, 2009, 1, 2812-2820.	4.0	101
50	Fibrillar Structure of Methylcellulose Hydrogels. Biomacromolecules, 2013, 14, 2484-2488.	2.6	100
51	Viscoelastic Properties, Ionic Conductivity, and Materials Design Considerations for Poly(styrene- <i>b</i> -ethylene oxide- <i>b</i> -styrene)-Based Ion Gel Electrolytes. Macromolecules, 2011, 44, 8981-8989.	2.2	97
52	Effect of dilution on a block copolymer in the complex phase window. Journal of Polymer Science, Part B: Polymer Physics, 1998, 36, 3101-3113.	2.4	96
53	Molecular Exchange in Ordered Diblock Copolymer Micelles. Macromolecules, 2011, 44, 3594-3604.	2.2	94
54	Single Ion Conducting, Polymerized Ionic Liquid Triblock Copolymer Films: High Capacitance Electrolyte Gates for n-type Transistors. ACS Applied Materials & Samp; Interfaces, 2015, 7, 7294-7302.	4.0	93

#	Article	IF	CITATIONS
55	Ternary Polymer Blends as Model Surfactant Systems. Journal of Physical Chemistry B, 2000, 104, 6987-6997.	1.2	91
56	Synthesis and self-assembly of fluorinated block copolymers. Journal of Polymer Science Part A, 2002, 40, 1-8.	2.5	90
57	Synergistic Increase in Ionic Conductivity and Modulus of Triblock Copolymer Ion Gels. Macromolecules, 2015, 48, 4942-4950.	2.2	89
58	Robust Polymer Electrolyte Membranes with High Ambient-Temperature Lithium-Ion Conductivity via Polymerization-Induced Microphase Separation. ACS Applied Materials & Samp; Interfaces, 2017, 9, 14561-14565.	4.0	89
59	The Orderâ°'Disorder Transition and the Disordered Micelle Regime in Sphere-Forming Block Copolymer Melts. Macromolecules, 2001, 34, 9143-9155.	2.2	88
60	Doubly Thermosensitive Self-Assembly of Diblock Copolymers in Ionic Liquids. Macromolecules, 2009, 42, 1315-1320.	2.2	88
61	Origin of the Thermoreversible fcc-bcc Transition in Block Copolymer Solutions. Physical Review Letters, 2004, 92, 145501.	2.9	86
62	Lyotropic Phase Behavior of Polybutadieneâ^Poly(ethylene oxide) Diblock Copolymers in Ionic Liquids. Macromolecules, 2008, 41, 1753-1759.	2.2	86
63	Two Calorimetric Glass Transitions in Miscible Blends Containing Poly(ethylene oxide). Macromolecules, 2008, 41, 2502-2508.	2.2	84
64	Equilibrium vs Metastability: High-Temperature Annealing of Spherical Block Copolymer Micelles in an lonic Liquid. Macromolecules, 2009, 42, 580-583.	2.2	84
65	Evolution of Morphology, Modulus, and Conductivity in Polymer Electrolytes Prepared via Polymerization-Induced Phase Separation. Macromolecules, 2015, 48, 1418-1428.	2.2	82
66	Micelle/Inverse Micelle Self-Assembly of a PEOâ^'PNIPAm Block Copolymer in Ionic Liquids with Double Thermoresponsivity. Macromolecules, 2010, 43, 9522-9528.	2.2	80
67	Block Copolymer Self-Diffusion in the Gyroid and Cylinder Morphologies. Macromolecules, 1998, 31, 5363-5370.	2.2	79
68	Static and dynamic scattering from ternary polymer blends: Bicontinuous microemulsions, Lifshitz lines, and amphiphilicity. Journal of Chemical Physics, 2001, 114, 7247-7259.	1.2	79
69	The Orderâ^'Disorder Transition and the Disordered Micelle Regime for Poly(ethylenepropylene-b-dimethylsiloxane) Spheres. Macromolecules, 2002, 35, 9687-9697.	2.2	79
70	ABA-triblock copolymer ion gels for CO2 separation applications. Journal of Membrane Science, 2012, 423-424, 20-26.	4.1	79
71	Solvent Distribution in Weakly-Ordered Block Copolymer Solutions. Macromolecules, 1997, 30, 6139-6149.	2.2	78
72	Thermodynamic Stability and Anisotropic Fluctuations in the Cylinder-to-Sphere Transition of a Block Copolymer. Macromolecules, 1999, 32, 7190-7201.	2.2	78

#	Article	IF	CITATIONS
73	Path-Dependent Morphology and Relaxation Kinetics of Highly Amphiphilic Diblock Copolymer Micelles in Ionic Liquids. Macromolecules, 2010, 43, 2018-2027.	2.2	78
74	Thermoreversible Morphology Transitions of Poly(styrene-b-dimethylsiloxane) Diblock Copolymer Micelles in Dilute Solution. Macromolecules, 2007, 40, 4048-4052.	2.2	77
75	A Stepwise "Micellization–Crystallization―Route to Oblate Ellipsoidal, Cylindrical, and Bilayer Micelles with Polyethylene Cores in Water. Macromolecules, 2012, 45, 9460-9467.	2.2	77
76	Polycation Architecture and Assembly Direct Successful Gene Delivery: Micelleplexes Outperform Polyplexes via Optimal DNA Packaging. Journal of the American Chemical Society, 2019, 141, 15804-15817.	6.6	77
77	Synthesis, Characterization, and Interaction Strengths of Difluorocarbene-Modified Polystyrenea	2.2	76
78	Contrast Variation Small-Angle Neutron Scattering Study of the Structure of Block Copolymer Micelles in a Slightly Selective Solvent at Semidilute Concentrations. Macromolecules, 2000, 33, 542-550.	2,2	76
79	UCST Phase Transition of Azobenzene-Containing Random Copolymer in an Ionic Liquid. Macromolecules, 2011, 44, 6908-6914.	2.2	76
80	Anhydrous Proton Conducting Polymer Electrolyte Membranes via Polymerization-Induced Microphase Separation. ACS Applied Materials & Samp; Interfaces, 2016, 8, 6200-6210.	4.0	76
81	Microphase Separation of High Grafting Density Asymmetric Mixed Homopolymer Brushes on Silica Particles. Macromolecules, 2010, 43, 8209-8217.	2.2	75
82	Poly($\langle i \rangle n \langle i \rangle$ -butyl methacrylate) in Ionic Liquids with Tunable Lower Critical Solution Temperatures (LCST). Journal of Physical Chemistry B, 2011, 115, 1971-1977.	1.2	74
83	Fibrillar Structure in Aqueous Methylcellulose Solutions and Gels. Macromolecules, 2013, 46, 9760-9771.	2.2	74
84	Light-Controlled Reversible Micellization of a Diblock Copolymer in an Ionic Liquid. Macromolecules, 2012, 45, 7566-7573.	2.2	71
85	Structure of Poly(styrene- <i>b</i> ethylene- <i>alt</i> propylene) Diblock Copolymer Micelles in Squalane. Journal of Physical Chemistry B, 2009, 113, 13840-13848.	1.2	70
86	Photoreversible Gelation of a Triblock Copolymer in an Ionic Liquid. Angewandte Chemie - International Edition, 2015, 54, 3018-3022.	7.2	68
87	Remarkable Effect of Molecular Architecture on Chain Exchange in Triblock Copolymer Micelles. Macromolecules, 2015, 48, 2667-2676.	2.2	68
88	Linear and Nonlinear Rheological Behavior of Fibrillar Methylcellulose Hydrogels. ACS Macro Letters, 2015, 4, 538-542.	2.3	67
89	A15, \ddot{l} f, and a Quasicrystal: Access to Complex Particle Packings via Bidisperse Diblock Copolymer Blends. ACS Macro Letters, 2020, 9, 197-203.	2.3	67
90	Epitaxial Transitions among FCC, HCP, BCC, and Cylinder Phases in a Block Copolymer Solution. Macromolecules, 2004, 37, 9064-9075.	2.2	65

#	Article	IF	CITATIONS
91	Thermally Reversible Ion Gels with Photohealing Properties Based on Triblock Copolymer Self-Assembly. Macromolecules, 2015, 48, 5928-5933.	2.2	65
92	Temperature-dependent micellar structures in poly(styrene-b-isoprene) diblock copolymer solutions near the critical micelle temperature. Journal of Chemical Physics, 2004, 121, 11489.	1.2	63
93	Miscibility and Crystallization in Polycarbonate/Poly($\hat{l}\mu$ -caprolactone) Blends: \hat{A} Application of the Self-Concentration Model. Macromolecules, 2005, 38, 5109-5117.	2.2	63
94	Tuning Cationic Block Copolymer Micelle Size by pH and Ionic Strength. Biomacromolecules, 2016, 17, 2849-2859.	2.6	63
95	Methyl cellulose solutions and gels: fibril formation and gelation properties. Progress in Polymer Science, 2021, 112, 101324.	11.8	63
96	Synthesis and Remarkable Efficacy of Model Polyethylene- <i>graft</i> poly(methyl methacrylate) Copolymers as Compatibilizers in Polyethylene/Poly(methyl methacrylate) Blends. Macromolecules, 2012, 45, 9604-9610.	2,2	62
97	Self-Diffusion and Tracer Diffusion in Sphere-Forming Block Copolymers. Macromolecules, 2003, 36, 7158-7164.	2.2	61
98	Structure–Conductivity Relationships in Ordered and Disordered Salt-Doped Diblock Copolymer/Homopolymer Blends. Macromolecules, 2016, 49, 6928-6939.	2.2	61
99	Effect of composition on the width of the calorimetric glass transition in polymer-solvent and solvent-solvent mixtures. Journal of Polymer Science, Part B: Polymer Physics, 2004, 42, 1155-1163.	2.4	60
100	Interfacial slip reduces polymer-polymer adhesion during coextrusion. Journal of Rheology, 2006, 50, 41-57.	1.3	60
101	Thermodynamics of Aqueous Methylcellulose Solutions. Macromolecules, 2015, 48, 7205-7215.	2.2	60
102	Effect of Thermodynamic Interactions on Reactions at Polymer/Polymer Interfaces. Macromolecules, 2003, 36, 7212-7219.	2,2	59
103	Disk Micelles from Nonionic Coilâ^'Coil Diblock Copolymers. Macromolecules, 2006, 39, 4526-4530.	2.2	59
104	Emergence of a C15 Laves Phase in Diblock Polymer/Homopolymer Blends. ACS Macro Letters, 2020, 9, 576-582.	2.3	59
105	Micellization of PS-PMMA Diblock Copolymers in an Ionic Liquid. Macromolecular Chemistry and Physics, 2007, 208, 339-348.	1.1	58
106	Thermoreversible high-temperature gelation of an ionic liquid with poly(benzyl methacrylate-b-methyl) Tj ETQq0	0 0 rgBT /	Overlock 10 T
107	An Ordered Nanoporous Monolith from an Elastomeric Crosslinked Block Copolymer Precursor. Macromolecular Rapid Communications, 2004, 25, 704-709.	2.0	56
108	Block Copolymer Micelle Shuttles with Tunable Transfer Temperatures between Ionic Liquids and Aqueous Solutions. Langmuir, 2008, 24, 5284-5290.	1.6	56

#	Article	IF	CITATIONS
109	Transfer Printing of Thermoreversible Ion Gels for Flexible Electronics. ACS Applied Materials & Samp; Interfaces, 2013, 5, 9522-9527.	4.0	56
110	Effect of Selective Perfluoroalkylation on the Segregation Strength of Polystyreneâ^'1,2-Polybutadiene Block Copolymers. Macromolecules, 2002, 35, 3889-3894.	2.2	55
111	Interfacial Morphology Development during PS/PMMA Reactive Coupling. Macromolecules, 2005, 38, 6586-6591.	2.2	55
112	Pluronic Micelle Shuttle between Water and an Ionic Liquid. Langmuir, 2010, 26, 8887-8892.	1.6	55
113	Fluctuations with Cubic Symmetry in a Hexagonal Copolymer Microstructure. Physical Review Letters, 1998, 81, 5354-5357.	2.9	54
114	Recent Advances in Understanding the Micro- and Nanoscale Phenomena of Amorphous Solid Dispersions. Molecular Pharmaceutics, 2019, 16, 4089-4103.	2.3	54
115	Thermodynamics and Mechanism of the Block Copolymer Micelle Shuttle between Water and an Ionic Liquid. Journal of Physical Chemistry B, 2009, 113, 14151-14157.	1.2	52
116	DC-Driven, Sub-2 V Solid-State Electrochemiluminescent Devices by Incorporating Redox Coreactants into Emissive Ion Gels. Chemistry of Materials, 2014, 26, 5358-5364.	3.2	52
117	Persistence of the Gyroid Morphology at Strong Segregation in Diblock Copolymers. Macromolecules, 2003, 36, 4682-4685.	2.2	51
118	Structure and Dynamics of Disordered Tetrablock Copolymers:Â Composition and Temperature Dependence of Local Friction. Macromolecules, 1998, 31, 4562-4573.	2.2	50
119	A Simple and Mild Route to Highly Fluorinated Model Polymers. Macromolecules, 2001, 34, 4780-4787.	2.2	50
120	Mapping Large Regions of Diblock Copolymer Phase Space by Selective Chemical Modification. Macromolecules, 2004, 37, 397-407.	2.2	50
121	High-Temperature Nanoporous Ceramic Monolith Prepared from a Polymeric Bicontinuous Microemulsion Template. Journal of the American Chemical Society, 2009, 131, 1676-1677.	6.6	50
122	Polymersomes with Ionic Liquid Interiors Dispersed in Water. Journal of the American Chemical Society, 2010, 132, 16265-16270.	6.6	50
123	A New Class of Fluorinated Polymers by a Mild, Selective, and Quantitative Fluorination. Journal of the American Chemical Society, 1998, 120, 6830-6831.	6.6	49
124	A framework for predicting the viscosity of miscible polymer blends. Journal of Rheology, 2004, 48, 463-486.	1.3	49
125	Packaging pDNA by Polymeric ABC Micelles Simultaneously Achieves Colloidal Stability and Structural Control. Journal of the American Chemical Society, 2018, 140, 11101-11111.	6.6	49
126	Subâ€3 V ZnO Electrolyteâ€Gated Transistors and Circuits with Screenâ€Printed and Photoâ€Crosslinked Ion Gel Gate Dielectrics: New Routes to Improved Performance. Advanced Functional Materials, 2020, 30, 1902028.	7.8	49

#	Article	IF	CITATIONS
127	Correlation Length and Entanglement Spacing in Concentrated Hydrogenated Polybutadiene Solutions. Macromolecules, 1999, 32, 1212-1217.	2.2	48
128	Nanoporous Materials Derived from Polymeric Bicontinuous Microemulsions. Chemistry of Materials, 2010, 22, 1279-1281.	3.2	48
129	Electrochemiluminescent displays based on ion gels: correlation between device performance and choice of electrolyte. Journal of Materials Chemistry C, 2016, 4, 8448-8453.	2.7	48
130	Lithium Salt-Induced Microstructure and Ordering in Diblock Copolymer/Homopolymer Blends. Macromolecules, 2016, 49, 4839-4849.	2.2	48
131	Block Polymer Micelles Enable CRISPR/Cas9 Ribonucleoprotein Delivery: Physicochemical Properties Affect Packaging Mechanisms and Gene Editing Efficiency. Macromolecules, 2019, 52, 8197-8206.	2.2	48
132	Effect of Concentration on the Glass Transition and Viscoelastic Properties of Poly(methyl) Tj ETQq0 0 0 rgBT /Ov	verlock 10 2:2	Tf 50 542 Td
133	Apparent Critical Micelle Concentrations in Block Copolymer/Ionic Liquid Solutions: Remarkably Weak Dependence on Solvophobic Block Molecular Weight. Macromolecules, 2012, 45, 4818-4829.	2.2	47
134	pH- and Ionic-Strength-Induced Contraction of Polybasic Micelles in Buffered Aqueous Solutions. Macromolecules, 2015, 48, 2677-2685.	2.2	47
135	Shear-Induced Nano-Macro Structural Transition in a Polymeric Bicontinuous Microemulsion. Physical Review Letters, 2001, 87, 098301.	2.9	46
136	Formation of Multicompartment Ion Gels by Stepwise Self-Assembly of a Thermoresponsive ABC Triblock Terpolymer in an Ionic Liquid. Macromolecules, 2016, 49, 2298-2306.	2.2	46
137	Structure, viscoelasticity, and interfacial dynamics of a model polymeric bicontinuous microemulsion. Soft Matter, 2016, 12, 53-66.	1.2	45
138	Nanocasting nanoporous inorganic and organic materials from polymeric bicontinuous microemulsion templates. Polymer Journal, 2012, 44, 131-146.	1.3	43
139	Superlattice by charged block copolymer self-assembly. Nature Communications, 2019, 10, 2108.	5. 8	43
140	Cryogenic Transmission Electron Microscopy Imaging of Vesicles Formed by a Polystyreneâ 'Polyisoprene Diblock Copolymer. Macromolecules, 2005, 38, 6779-6781.	2.2	42
141	Role of Chain Length in the Formation of Frank-Kasper Phases in Diblock Copolymers. Physical Review Letters, 2018, 121, 208002.	2.9	42
142	Hierarchically Structured Materials from Block Polymer Confinement within Bicontinuous Microemulsion-Derived Nanoporous Polyethylene. ACS Nano, 2011, 5, 8914-8927.	7.3	41
143	Lower Critical Solution Temperature Phase Behavior of Poly(<i>n</i> butyl methacrylate) in Ionic Liquid Mixtures. Macromolecules, 2013, 46, 9464-9472.	2.2	41
144	Printable, Degradable, and Biocompatible Ion Gels from a Renewable ABA Triblock Polyester and a Low Toxicity Ionic Liquid. ACS Macro Letters, 2017, 6, 1083-1088.	2.3	41

#	Article	IF	Citations
145	Effects of component molecular weight on the viscoelastic properties of thermoreversible supramolecular ion gels via hydrogen bonding. Soft Matter, 2012, 8, 2110.	1.2	40
146	Thermoresponsive Polymers for Nuclear Medicine: Which Polymer Is the Best?. Langmuir, 2016, 32, 6115-6122.	1.6	40
147	Preparation, Characterization, and Formulation Development of Drug–Drug Protic Ionic Liquids of Diphenhydramine with Ibuprofen and Naproxen. Molecular Pharmaceutics, 2018, 15, 4190-4201.	2.3	40
148	Viscoelastic Synergy in Aqueous Mixtures of Wormlike Micelles and Model Amphiphilic Triblock Copolymers. Macromolecules, 2007, 40, 1615-1623.	2.2	39
149	Detection of Pharmaceutical Drug Crystallites in Solid Dispersions by Transmission Electron Microscopy. Molecular Pharmaceutics, 2015, 12, 983-990.	2.3	39
150	Chain Exchange Kinetics in Diblock Copolymer Micelles in Ionic Liquids: The Role of χ. Macromolecules, 2016, 49, 9542-9552.	2.2	39
151	Impact of Polymer Excipient Molar Mass and End Groups on Hydrophobic Drug Solubility Enhancement. Macromolecules, 2017, 50, 1102-1112.	2.2	39
152	Influence of Conformational Asymmetry on the Phase Behavior of Ternary Homopolymer/Block Copolymer Blends around the Bicontinuous Microemulsion Channel. Journal of Physical Chemistry B, 2006, 110, 3979-3989.	1.2	38
153	Morphology, Modulus, and Conductivity of a Triblock Terpolymer/Ionic Liquid Electrolyte Membrane. Macromolecules, 2014, 47, 1090-1098.	2.2	38
154	Enhanced Performance of Blended Polymer Excipients in Delivering a Hydrophobic Drug through the Synergistic Action of Micelles and HPMCAS. Langmuir, 2017, 33, 2837-2848.	1.6	38
155	Block Copolymers: Long-Term Growth with Added Value. Macromolecules, 2020, 53, 2-4.	2.2	38
156	Effect of Corona Block Length on the Structure and Chain Exchange Kinetics of Block Copolymer Micelles. Macromolecules, 2018, 51, 3563-3571.	2.2	37
157	Celebrating 50 Years of <i>Macromolecules</i> . Macromolecules, 2017, 50, 9525-9527.	2.2	36
158	Composition and Temperature Dependence of Monomer Friction in Polystyrene/Poly(methyl) Tj ETQq0 0 0 rgBT	/Overlock	10 ₃ tf 50 222
159	Interpolyelectrolyte Complexes of Polycationic Micelles and Linear Polyanions: Structural Stability and Temporal Evolution. Journal of Physical Chemistry B, 2015, 119, 15919-15928.	1.2	35
160	2-Hydroxyethylcellulose and Amphiphilic Block Polymer Conjugates Form Mechanically Tunable and Nonswellable Hydrogels. ACS Macro Letters, 2017, 6, 145-149.	2.3	35
161	Gelation, Phase Separation, and Fibril Formation in Aqueous Hydroxypropylmethylcellulose Solutions. Biomacromolecules, 2018, 19, 816-824.	2.6	35
162	Maintaining Hydrophobic Drug Supersaturation in a Micelle Corona Reservoir. Macromolecules, 2018, 51, 540-551.	2.2	35

#	Article	IF	CITATIONS
163	Measurement of Gyroid Single Grain Growth Rates in Block Copolymer Solutions. Macromolecules, 2003, 36, 7672-7680.	2.2	34
164	Exchange Kinetics for a Single Block Copolymer in Micelles of Two Different Sizes. Macromolecules, 2018, 51, 2312-2320.	2.2	34
165	Molecular Weight Dependence of Methylcellulose Fibrillar Networks. Macromolecules, 2018, 51, 7767-7775.	2.2	34
166	Structure and Properties of Bicontinuous Microemulsions from Salt-Doped Ternary Polymer Blends. Macromolecules, 2019, 52, 9693-9702.	2.2	34
167	Grain Shapes and Growth Kinetics of the Cylinder Phase in a Block Copolymer Solution. Macromolecules, 2004, 37, 4891-4899.	2.2	33
168	Molecular Alignment in Polyethylene during Cold Drawing Using In-Situ SANS and Raman Spectroscopy. Macromolecules, 2017, 50, 3627-3636.	2.2	33
169	Failure of time-temperature superposition in dilute miscible polymer blends. Colloid and Polymer Science, 2004, 282, 793-801.	1.0	31
170	Depletion Interactions: A New Control Parameter for the Self-Assembly of Diblock Copolymer Micelles. Physical Review Letters, 2007, 99, 137802.	2.9	31
171	Synthesis of block polymer miktobrushes. Polymer Chemistry, 2013, 4, 166-173.	1.9	31
172	Polymer Day: Outreach Experiments for High School Students. Journal of Chemical Education, 2017, 94, 1629-1638.	1.1	31
173	Quantifying Binding of Ethylene Oxide–Propylene Oxide Block Copolymers with Lipid Bilayers. Langmuir, 2017, 33, 12624-12634.	1.6	31
174	Complexation of DNA with Cationic Copolymer Micelles: Effects of DNA Length and Topology. Macromolecules, 2018, 51, 1150-1160.	2.2	31
175	Temperatureâ€based fluorescence measurements of pyrene in block copolymer micelles: Probing micelle core glass transition breadths. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 500-515.	2.4	30
176	High Capacitance, Photo-Patternable Ion Gel Gate Insulators Compatible with Vapor Deposition of Metal Gate Electrodes. ACS Applied Materials & Interfaces, 2014, 6, 19275-19281.	4.0	30
177	Phase Behavior of Diblock Copolymer–Homopolymer Ternary Blends: Congruent First-Order Lamellar–Disorder Transition. Macromolecules, 2016, 49, 7928-7944.	2.2	30
178	Phase Behavior of Binary Polymer Blends Doped with Salt. Macromolecules, 2018, 51, 266-274.	2.2	29
179	Direct Observation of Micelle Fragmentation via In Situ Liquid-Phase Transmission Electron Microscopy. ACS Macro Letters, 2020, 9, 756-761.	2.3	29
180	Molecular Simulation of Olefin Oligomer Blend Phase Behavior. Macromolecules, 2016, 49, 3975-3985.	2.2	28

#	Article	IF	CITATIONS
181	Chemical End Group Modified Diblock Copolymers Elucidate Anchor and Chain Mechanism of Membrane Stabilization. Molecular Pharmaceutics, 2017, 14, 2333-2339.	2.3	28
182	Conformation of Methylcellulose as a Function of Poly(ethylene glycol) Graft Density. ACS Macro Letters, 2017, 6, 1274-1279.	2.3	28
183	Extensional Flow Behavior of Methylcellulose Solutions Containing Fibrils. ACS Macro Letters, 2018, 7, 347-352.	2.3	28
184	Quasicrystals and Their Approximants in a Crystalline–Amorphous Diblock Copolymer. Macromolecules, 2021, 54, 2647-2660.	2.2	28
185	Expansion factor of a part of a polymer chain in a good solvent measured by small-angle neutron scattering. Macromolecules, 1984, 17, 1785-1789.	2.2	27
186	Synthesis and self-assembly of highly incompatible polybutadiene-poly(hexafluoropropylene oxide) diblock copolymers. Journal of Polymer Science, Part B: Polymer Physics, 2005, 43, 3685-3694.	2.4	27
187	Comparison of Gel Relaxation Times and End-Block Pullout Times in ABA Triblock Copolymer Networks. Macromolecules, 2016, 49, 7340-7349.	2.2	27
188	One-pot synthesis of reactive oxygen species (ROS)-self-immolative polyoxalate prodrug nanoparticles for hormone dependent cancer therapy with minimized side effects. Polymer Chemistry, 2017, 8, 1999-2004.	1.9	27
189	Effect of Poly(ethylene glycol) Grafting Density on Methylcellulose Fibril Formation. Macromolecules, 2018, 51, 9413-9421.	2.2	27
190	Hydrogenolysis of Linear Low-Density Polyethylene during Heterogeneous Catalytic Hydrogen–Deuterium Exchange. Macromolecules, 2020, 53, 6043-6055.	2.2	27
191	Complex Phase Behavior in Particle-Forming AB/AB′ Diblock Copolymer Blends with Variable Core Block Lengths. Macromolecules, 2021, 54, 7088-7101.	2.2	27
192	Self-diffusion of a polystyrene-polyisoprene block copolymer. Journal of Polymer Science, Part B: Polymer Physics, 1996, 34, 2899-2909.	2.4	26
193	Entropically driven phase separation of highly branched/linear polyolefin blends. Journal of Polymer Science, Part B: Polymer Physics, 2000, 38, 2965-2975.	2.4	26
194	Direct Observation of Nanostructures during Aqueous Dissolution of Polymer/Drug Particles. Macromolecules, 2017, 50, 3143-3152.	2.2	26
195	Coil Dimensions of Poly(ethylene oxide) in an Ionic Liquid by Small-Angle Neutron Scattering. Macromolecules, 2017, 50, 8739-8744.	2.2	26
196	Linear Viscoelasticity of a Polymeric Bicontinuous Microemulsion. Macromolecules, 2002, 35, 4210-4215.	2.2	25
197	Block Copolymer Vesicles in Liquid CO2. Macromolecules, 2007, 40, 4917-4923.	2.2	25
198	Vesicle Membrane Thickness in Aqueous Dispersions of Block Copolymer Blends. Macromolecules, 2008, 41, 8289-8291.	2.2	25

#	Article	IF	CITATIONS
199	Computational Design of High-χ Block Oligomers for Accessing 1 nm Domains. ACS Nano, 2018, 12, 4351-4361.	7.3	25
200	Poly(methyl methacrylate)- <i>block</i> -poly(<i>n</i> -butyl methacrylate) Diblock Copolymer Micelles in an Ionic Liquid: Scaling of Core and Corona Size with Core Block Length. Macromolecules, 2016, 49, 3639-3646.	2,2	24
201	Self-Supporting, Hydrophobic, Ionic Liquid-Based Reference Electrodes Prepared by Polymerization-Induced Microphase Separation. ACS Sensors, 2017, 2, 1498-1504.	4.0	24
202	Cardiac Muscle Membrane Stabilization in Myocardial Reperfusion Injury. JACC Basic To Translational Science, 2019, 4, 275-287.	1.9	24
203	Influence of Added Salt on Chain Conformations in Poly(ethylene oxide) Melts: SANS Analysis with Complications. Macromolecules, 2020, 53, 7141-7149.	2.2	24
204	Solid-Contact Ion-Selective and Reference Electrodes Covalently Attached to Functionalized Poly(ethylene terephthalate). Analytical Chemistry, 2020, 92, 7621-7629.	3.2	24
205	Asymmetric block copolymers in neutral good solvents: self-diffusion through the ordering transition. Macromolecular Chemistry and Physics, 1997, 198, 983-995.	1.1	23
206	Tuning of Sol–Gel Transition Temperatures for Thermoreversible Ion Gels. Chemistry Letters, 2014, 43, 204-206.	0.7	23
207	Structure of Two-Compartment Hydrogels from Thermoresponsive ABC Triblock Terpolymers. Macromolecules, 2015, 48, 5934-5943.	2.2	23
208	Centrifugally Spun \hat{l} ±-Fe2O3/TiO2/Carbon Composite Fibers as Anode Materials for Lithium-Ion Batteries. Applied Sciences (Switzerland), 2019, 9, 4032.	1.3	23
209	Polymer Nanogels as Reservoirs To Inhibit Hydrophobic Drug Crystallization. ACS Nano, 2019, 13, 1232-1243.	7.3	23
210	Properties of polystyrene-poly(methylmethacrylate) random and diblock copolymers in dilute and semidilute solutions. Journal of Polymer Science, Part B: Polymer Physics, 1994, 32, 1927-1941.	2.4	22
211	Grain shapes and growth kinetics during self-assembly of block copolymers. Journal of Polymer Science, Part B: Polymer Physics, 2006, 44, 481-491.	2.4	22
212	Component Terminal Dynamics in Poly(ethylene oxide)/Poly(methyl methacrylate) Blends. Macromolecules, 2008, 41, 5033-5041.	2.2	22
213	Nanoporous Poly(3,4-ethylenedioxythiophene) Derived from Polymeric Bicontinuous Microemulsion Templates. Macromolecules, 2012, 45, 599-601.	2.2	22
214	¹⁹ F Magnetic Resonance Imaging of Injectable Polymeric Implants with Multiresponsive Behavior. Chemistry of Materials, 2018, 30, 4892-4896.	3.2	22
215	Internal Structure of Methylcellulose Fibrils. Macromolecules, 2020, 53, 398-405.	2.2	22
216	Polarized and depolarized dynamic light scattering from a block copolymer melt. Journal of Polymer Science, Part B: Polymer Physics, 1997, 35, 1643-1648.	2.4	21

#	Article	IF	CITATIONS
217	Domain size equilibration in sphere-forming block copolymers. Journal of Polymer Science, Part B: Polymer Physics, 2003, 41, 715-724.	2.4	21
218	Multicompartment Micelles by Aqueous Self-Assembly of $\hat{l}/4$ -A(BC) _{<i>n</i>} <i>Mikto</i> brush Terpolymers. ACS Omega, 2016, 1, 1027-1033.	1.6	21
219	Architecture-Dependent Stabilization of Polyelectrolyte Complexes between Polyanions and Cationic Triblock Terpolymer Micelles. Macromolecules, 2016, 49, 6644-6654.	2.2	21
220	Synthesis, Simulation, and Self-Assembly of a Model Amphiphile To Push the Limits of Block Polymer Nanopatterning. Nano Letters, 2019, 19, 4458-4462.	4.5	21
221	Effect of Ionic Liquid Components on the Coil Dimensions of PEO. Macromolecules, 2019, 52, 3123-3130.	2.2	21
222	Formation of a C15 Laves Phase with a Giant Unit Cell in Salt-Doped A/B/AB Ternary Polymer Blends. ACS Nano, 2020, 14, 13754-13764.	7.3	21
223	Fluctuation regime in the viscoelastic properties of block copolymer solutions. Rheologica Acta, 1997, 36, 229-238.	1.1	20
224	Direct Correlation Between Adhesion Promotion and Coupling Reaction at Immiscible Polymer-Polymer Interfaces. Journal of Adhesion, 2006, 82, 887-902.	1.8	20
225	Precisely Tunable Sol–Gel Transition Temperature by Blending Thermoresponsive ABC Triblock Terpolymers. ACS Macro Letters, 2018, 7, 950-955.	2.3	20
226	Understanding the Molecular Weight Dependence of \ddot{l}^{\ddagger} and the Effect of Dispersity on Polymer Blend Phase Diagrams. Macromolecules, 2018, 51, 3774-3787.	2.2	20
227	Diffusion in microstructured block copolymer melts. Macromolecular Symposia, 1997, 121, 219-233.	0.4	19
228	Plasticization of amorphous perfluoropolymers. Journal of Polymer Science, Part B: Polymer Physics, 2008, 46, 516-525.	2.4	19
229	Permeability of Rubbery and Glassy Membranes of Ionic Liquid Filled Polymersome Nanoreactors in Water. Journal of Physical Chemistry B, 2015, 119, 15054-15062.	1.2	19
230	Poly(alkyl methacrylate)-Grafted Polyolefins as Viscosity Modifiers for Engine Oil: A New Mechanism for Improved Performance. Industrial & Engineering Chemistry Research, 2018, 57, 1840-1850.	1.8	19
231	Influence of Cholesterol and Bilayer Curvature on the Interaction of PPO–PEO Block Copolymers with Liposomes. Langmuir, 2019, 35, 7231-7241.	1.6	19
232	Effect of Solvent Selectivity on Chain Exchange Kinetics in Block Copolymer Micelles. Macromolecules, 2020, 53, 417-426.	2.2	19
233	Reevaluation of Poly(ethylene- <i>alt</i> propylene)- <i>block</i> -Polydimethylsiloxane Phase Behavior Uncovers Topological Close-Packing and Epitaxial Quasicrystal Growth. ACS Nano, 2021, 15, 9453-9468.	7.3	19
234	Kinetics of disorder-to-fcc phase transition via an intermediate bcc state. Physical Review E, 2006, 73, 061803.	0.8	18

#	Article	IF	CITATIONS
235	Solvent Selective Hydrogen–Deuterium Exchange on Saturated Polyolefins. Macromolecules, 2012, 45, 7778-7782.	2.2	18
236	Fluctuation Effects in Symmetric Diblock Copolymer–Homopolymer Ternary Mixtures near the Lamellar–Disorder Transition. ACS Macro Letters, 2014, 3, 1041-1045.	2.3	18
237	Surface Plasmon Resonance Study of the Binding of PEO–PPO–PEO Triblock Copolymer and PEO Homopolymer to Supported Lipid Bilayers. Langmuir, 2018, 34, 6703-6712.	1.6	18
238	Prediction of Segmental and Global Dynamics in Disordered Styreneâ^'Isoprene Tetrablock Copolymers. Macromolecules, 2003, 36, 9170-9175.	2.2	17
239	Depletion Interactions: Effects of Added Homopolymer on Ordered Phases Formed by Spherical Block Copolymer Micelles. Macromolecules, 2008, 41, 8895-8902.	2.2	17
240	Bicontinuous Microemulsions in Partially Charged Ternary Polymer Blends. ACS Macro Letters, 2019, 8, 1166-1171.	2.3	17
241	Twinning and growth kinetics of lamellar grains in a diblock copolymer solution. Journal of Polymer Science, Part B: Polymer Physics, 2005, 43, 405-412.	2.4	16
242	The O52 network by molecular design: CECD tetrablock terpolymers. Soft Matter, 2009, 5, 1587.	1.2	16
243	Phase behavior of polyisoprene-poly(butylene oxide) and poly(ethylene-alt-propylene)-poly(butylene) Tj ETQq $1\ 1$	0.784314 1.2	$+$ rg $_{16}^{ m BT}$ /Over $^{ m to}$
244	Large Amplitude Oscillatory Shear of Block Copolymer Spheres on a Body-Centered Cubic Lattice: Are Micelles Like Metals?. Journal of Physical Chemistry B, 2011, 115, 5840-5848.	1.2	16
245	Rate of Molecular Exchange through the Membranes of Ionic Liquid Filled Polymersomes Dispersed in Water. Journal of Physical Chemistry C, 2014, 118, 21140-21147.	1.5	16
246	Nanoscale Concentration Quantification of Pharmaceutical Actives in Amorphous Polymer Matrices by Electron Energy-Loss Spectroscopy. Langmuir, 2016, 32, 7411-7419.	1.6	16
247	Improved nanoformulation and bio-functionalization of linear-dendritic block copolymers with biocompatible ionic liquids. Nanoscale, 2022, 14, 6021-6036.	2.8	16
248	Styrene and isoprene friction factors in styrene-isoprene matrices. Journal of Polymer Science, Part B: Polymer Physics, 1998, 36, 3079-3086.	2.4	15
249	Effect of composition fluctuations on tracer diffusion in symmetric diblock copolymers. Journal of Chemical Physics, 1998, 108, 4634-4639.	1.2	15
250	Interfacial Tension-Hindered Phase Transfer of Polystyrene- <i>b</i> poly(ethylene oxide) Polymersomes from a Hydrophobic Ionic Liquid to Water. Langmuir, 2015, 31, 594-601.	1.6	15
251	Chain Exchange Kinetics of Asymmetric B ₁ AB ₂ Linear Triblock and AB ₁ B ₂ Branched Triblock Copolymers. Macromolecules, 2017, 50, 6303-6313.	2.2	15
252	Complexation of Linear DNA and Poly(styrenesulfonate) with Cationic Copolymer Micelles: Effect of Polyanion Flexibility. Journal of Physical Chemistry B, 2017, 121, 6708-6720.	1.2	15

#	Article	ΙF	Citations
253	Properties of Chemically Cross-Linked Methylcellulose Gels. Macromolecules, 2019, 52, 7740-7748.	2.2	15
254	On the selection of FCC and BCC lattices in poly(styrene-b-isoprene) copolymer micelles. Macromolecular Research, 2008, 16, 51-56.	1.0	14
255	Stimuliâ€triggered phase transfer of polymerâ€inorganic hybrid hairy particles between two immiscible liquid phases. Journal of Polymer Science, Part B: Polymer Physics, 2014, 52, 1600-1619.	2.4	14
256	Impact of molecular weight and comonomer content on catalytic hydrogen-deuterium exchange in polyolefins. Polymer, 2016, 102, 99-105.	1.8	14
257	Influence of the Headgroup on the Interaction of Poly(ethylene oxide)-Poly(propylene oxide) Block Copolymers with Lipid Bilayers. Journal of Physical Chemistry B, 2020, 124, 2417-2424.	1.2	14
258	Spatial Distribution of PEO–PPO–PEO Block Copolymer and PEO Homopolymer in Lipid Bilayers. Langmuir, 2020, 36, 3393-3403.	1.6	14
259	Influence of Charge Fraction on the Phase Behavior of Symmetric Single-Ion Conducting Diblock Copolymers. ACS Macro Letters, 2021, 10, 1035-1040.	2.3	14
260	Phase Behavior of Linear-Bottlebrush Block Polymers. Macromolecules, 2022, 55, 2821-2831.	2.2	14
261	Size Control and Fractionation of Ionic Liquid Filled Polymersomes with Glassy and Rubbery Bilayer Membranes. Langmuir, 2016, 32, 4959-4968.	1.6	13
262	Micellization of Binary Diblock Co-polymer Mixtures in an Ionic Liquid. Macromolecules, 2019, 52, 4729-4738.	2.2	13
263	Photoreversible Order–Disorder Transition in an Ionic Liquid Solvated Block Polymer. ACS Macro Letters, 2019, 8, 393-398.	2.3	13
264	Recent developments in centrifugally spun composite fibers and their performance as anode materials for lithium-ion and sodium-ion batteries. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 266, 115024.	1.7	13
265	Molecular Weight Dependence of Block Copolymer Micelle Fragmentation Kinetics. Journal of the American Chemical Society, 2021, 143, 7748-7758.	6.6	13
266	Phase Behavior of Diblock Copolymer–Homopolymer Ternary Blends with a Compositionally Asymmetric Diblock Copolymer. Macromolecules, 2021, 54, 460-472.	2.2	13
267	Multicompartment micelles from A2-star-(B-alt-C) block terpolymers in selective solvents. Soft Matter, 2011, 7, 5638.	1.2	12
268	Photoreversible Gelation of a Triblock Copolymer in an Ionic Liquid. Angewandte Chemie, 2015, 127, 3061-3065.	1.6	12
269	Influence of Composition Fluctuations on the Linear Viscoelastic Properties of Symmetric Diblock Copolymers near the Order–Disorder Transition. ACS Macro Letters, 2015, 4, 260-265.	2.3	12
270	Complexation between DNA and Hydrophilic-Cationic Diblock Copolymers. Journal of Physical Chemistry B, 2017, 121, 2230-2243.	1.2	12

#	Article	IF	Citations
271	Equilibration of Micelle–Polyelectrolyte Complexes: Mechanistic Differences between Static and Annealed Charge Distributions. Journal of Physical Chemistry B, 2017, 121, 4631-4641.	1.2	12
272	Effect of Branching and Molecular Weight on Heterogeneous Catalytic Deuterium Exchange in Polyolefins. Macromolecules, 2017, 50, 6849-6860.	2.2	12
273	In Situ Production of Graphene–Fiber Hybrid Structures. ACS Applied Materials & Diterfaces, 2017, 9, 25474-25480.	4.0	12
274	Structures and Protonation States of Hydrophilic–Cationic Diblock Copolymers and Their Binding with Plasmid DNA. Journal of Physical Chemistry B, 2018, 122, 2449-2461.	1.2	12
275	Preparation of Inorganic/Organic Double-Network Ion Gels Using a Cross-Linkable Polymer in an Open System. Macromolecules, 2020, 53, 8529-8538.	2.2	12
276	Dilute Solution Properties of Poly(benzyl methacrylate) in Ionic Liquids. Macromolecules, 2020, 53, 885-894.	2.2	12
277	Hybridization of a Bimodal Distribution of Copolymer Micelles. Macromolecules, 2020, 53, 7705-7716.	2.2	11
278	Homopolymer and small-molecule tracer diffusion in a gyroid matrix. Journal of Polymer Science, Part B: Polymer Physics, 2001, 39, 843-859.	2.4	10
279	Fluorinated Amphiphilic Block Copolymers: Combining Anionic Polymerization and Selective Polymer Modification. Macromolecular Symposia, 2004, 215, 51-56.	0.4	10
280	Hierarchical microphase separation in bicontinuous ternary polymer blends. Soft Matter, 2012, 8, 3429.	1.2	10
281	Effects of Solvent Quality and Degree of Polymerization on the Critical Micelle Temperature of Poly(ethylene oxide- <i>b</i> - <i>n</i> -butyl methacrylate) in Ionic Liquids. Macromolecules, 2014, 47, 1455-1461.	2.2	10
282	The effect of light penetration depth on the LCST phase behavior of a thermo―and photoresponsive statistical copolymer in an ionic liquid. Journal of Polymer Science Part A, 2019, 57, 281-287.	2.5	10
283	More than a Liquid Junction: Effect of Stirring, Flow Rate, and Inward and Outward Electrolyte Diffusion on Reference Electrodes with Salt Bridges Contained in Nanoporous Glass. Analytical Chemistry, 2019, 91, 7698-7704.	3.2	10
284	Thermodynamic characteristics of poly(cyclohexylethyleneâ€ <i>b</i> â€ethyleneâ€ <i>coâ€</i> ethylethylene) block copolymers. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 566-574.	2.4	9
285	Toughening polylactide with a catalyzed epoxyâ€acid interfacial reaction. Polymer Engineering and Science, 2018, 58, 28-36.	1.5	9
286	From Order to Disorder: Computational Design of Triblock Amphiphiles with 1 nm Domains. Journal of the American Chemical Society, 2020, 142, 9352-9362.	6.6	9
287	Influence of long-chain branching on the miscibility of poly(ethylene-r-ethylethylene) blends with different microstructures. Journal of Polymer Science, Part B: Polymer Physics, 2002, 40, 466-477.	2.4	8
288	Chain Dimensions in Poly(ethylene oxide)/Poly(methyl methacrylate) Blends. Macromolecules, 2008, 41, 1050-1052.	2.2	8

#	Article	IF	Citations
289	Fragmentation of 1,2-Polybutadiene- <i>block</i> -Poly(ethylene oxide) Micelles in Imidazolium-Based Ionic Liquids. Macromolecules, 2019, 52, 7089-7101.	2.2	8
290	Performance and morphology of centrifugally spun Co3O4/C composite fibers for anode materials in lithium-ion batteries. Journal of Materials Science, 2021, 56, 16010-16027.	1.7	8
291	Phase Behavior of Salt-Doped A/B/AB Ternary Polymer Blends: The Role of Homopolymer Distribution. Macromolecules, 2021, 54, 6990-7002.	2.2	8
292	Self-Assembly of Partially Charged Diblock Copolymer-Homopolymer Ternary Blends. Macromolecules, 2022, 55, 4766-4775.	2.2	8
293	Star-shaped polymers by living cationic polymerization. VIII. Size and shape of star poly(vinyl ether)s determined by dynamic light scattering and computer simulation. Journal of Polymer Science, Part B: Polymer Physics, 1995, 33, 527-535.	2.4	7
294	Models for adhesion at weak polymer interfaces. Journal of Polymer Science, Part B: Polymer Physics, 2009, 47, 2313-2319.	2.4	7
295	Nanoscale Mixing of Soft Solids. Journal of the American Chemical Society, 2011, 133, 1722-1725.	6.6	7
296	Role of Polymer Excipients in the Kinetic Stabilization of Drug-Rich Nanoparticles. ACS Applied Bio Materials, 2020, 3, 7243-7254.	2.3	7
297	Salt-Dependent Structure in Methylcellulose Fibrillar Gels. Macromolecules, 2021, 54, 2090-2100.	2.2	7
298	Development of a PointNet for Detecting Morphologies of Self-Assembled Block Oligomers in Atomistic Simulations. Journal of Physical Chemistry B, 2021, 125, 5275-5284.	1.2	7
299	Centrifugally spun carbon fibers prepared from aqueous poly(vinylpyrrolidone) solutions as binderâ€free anodes in lithiumâ€ion batteries. Journal of Applied Polymer Science, 2021, 138, 50396.	1.3	7
300	Synthesis and Micellization of Bottlebrush Poloxamers. ACS Macro Letters, 2022, 11, 460-467.	2.3	7
301	Impact of Side-Chain Length on the Self-Assembly of Linear-Bottlebrush Diblock Copolymers. Macromolecules, 2022, 55, 4947-4955.	2.2	7
302	Structure of poly(styreneâ€∢i>bâ€ethyleneâ€∢i>altâ€propylene) diblock copolymer micelles in binary solvent mixtures. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 22-31.	2.4	6
303	Dynamics of a Supercooled Disordered Sphere-Forming Diblock Copolymer as Determined by X-ray Photon Correlation and Dynamic Mechanical Spectroscopies. ACS Macro Letters, 2018, 7, 1486-1491.	2.3	6
304	The Use of Succinonitrile as an Electrolyte Additive for Composite-Fiber Membranes in Lithium-Ion Batteries. Membranes, 2020, 10, 45.	1.4	6
305	Lipid Membrane Binding and Cell Protection Efficacy of Poly $(1,2$ -butylene oxide)-b-poly $($ ethylene oxide $)$ Copolymers. Biomacromolecules, 2022, , .	2.6	6
306	A new framework for X-ray photon correlation spectroscopy analysis from polycrystalline materials. Review of Scientific Instruments, 2018, 89, 123902.	0.6	5

#	Article	IF	CITATIONS
307	Effect of Ion Concentration on the Formation of Bicontinuous Microemulsions in Partially Charged Ternary Polymer Blends. Macromolecules, 2019, 52, 9416-9424.	2.2	5
308	Free Energy Trajectory for Escape of a Single Chain from a Diblock Copolymer Micelle. ACS Macro Letters, 2021, 10, 1570-1575.	2.3	5
309	Stabilizing a Double Gyroid Network Phase with 2 nm Feature Size by Blending of Lamellar and Cylindrical Forming Block Oligomers. Jacs Au, 2022, 2, 1405-1416.	3.6	5
310	Unusual Lower Critical Solution Temperature Phase Behavior of Poly(benzyl methacrylate) in a Pyrrolidinium-Based Ionic Liquid. Molecules, 2021, 26, 4850.	1.7	4
311	Homopolymer and small-molecule tracer diffusion in a gyroid matrix. , 2001, 39, 843.		4
312	Grain Growth and Coarsening Dynamics in a Compositionally Asymmetric Block Copolymer Revealed by X-ray Photon Correlation Spectroscopy. Macromolecules, 2020, 53, 8233-8243.	2.2	4
313	Microfluidic filament thinning of aqueous, fibrillar methylcellulose solutions. Physical Review Fluids, 2020, 5, .	1.0	4
314	Temperature Dependence of Chain Conformations and Fibril Formation in Solutions of Poly(<i>N</i> -isopropylacrylamide)-Grafted Methylcellulose. Macromolecules, 2022, 55, 550-558.	2.2	4
315	Nondestructive Photo-Cross-Linking of Microphase-Separated Diblock Polymers through Coumarin Dimerization. Macromolecules, 2022, 55, 3317-3324.	2.2	4
316	Mechanical properties of glass continuous poly(cyclohexylethylene) block copolymers. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 706-717.	2.4	3
317	Dynamic light scattering from ternary polymer blends: critical behavior and bicontinuous microemulsions. Macromolecular Symposia, 2000, 149, 107-112.	0.4	2
318	Effect of Added Homopolymer on the Hexagonal Phase Formed by Cylindrical Block Copolymer Micelles in a Selective Solvent. Macromolecular Rapid Communications, 2009, 30, 352-361.	2.0	2
319	Effects of Electrolytes on Thermodynamics and Structure of Oligo(ethylene oxide)/Salt Solutions and Liquid–Liquid Equilibria of a Squalane/Tetraethylene Glycol Dimethyl Ether Blend. Macromolecules, 2021, 54, 1120-1136.	2.2	2
320	Photoreversible Order–Disorder Transitions in Block Copolymer/Ionic Liquid Solutions. Macromolecules, 2022, 55, 3811-3820.	2.2	2
321	The Reactive Formation of Diblock Copolymer at a Polymer/Polymer Interface and its Effect on Interfacial Structure. Materials Research Society Symposia Proceedings, 2000, 629, 1.	0.1	1
322	The regional editors. Macromolecular Chemistry and Physics, 1994, 195, 1469-1469.	1.1	0
323	A Golden Age for Macromolecules. Kobunshi, 2008, 57, 23-24.	0.0	0
324	Nanoscopic Resolution of the Glass Transition within Spatially Inhomogeneous Polymer Mixtures. ACS Central Science, 2018, 4, 431-433.	5.3	0