
Stefano Consonni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4386862/publications.pdf Version: 2024-02-01

STEEANO CONSONNI

#	Article	IF	CITATIONS
1	Low-carbon hydrogen via integration of steam methane reforming with molten carbonate fuel cells at low fuel utilization. Advances in Applied Energy, 2021, 2, 100010.	6.6	16
2	The Zero Waste utopia and the role of waste-to-energy. Waste Management and Research, 2020, 38, 481-484.	2.2	13
3	Preliminary Performance and Cost Evaluation of Four Alternative Technologies for Post-Combustion CO2 Capture in Natural Gas-Fired Power Plants. Energies, 2020, 13, 543.	1.6	19
4	Molten Carbonate Fuel Cells retrofits for CO2 capture and enhanced energy production in the steel industry. International Journal of Greenhouse Gas Control, 2019, 88, 195-208.	2.3	32
5	Techno-economic analysis of calcium looping processes for low CO2 emission cement plants. International Journal of Greenhouse Gas Control, 2019, 82, 244-260.	2.3	104
6	Molten Carbonate Fuel Cells for Retrofitting Postcombustion CO2 Capture in Coal and Natural Gas Power Plants. Journal of Electrochemical Energy Conversion and Storage, 2018, 15, .	1.1	22
7	Municipal Solid Waste to Energy Technology. , 2017, , 389-401.		4
8	Numerical optimization of Combined Heat and Power Organic Rankine Cycles – Part A: Design optimization. Energy, 2015, 90, 310-328.	4.5	35
9	The Calcium Looping Process for Low CO2 Emission Cement Plants. Energy Procedia, 2014, 61, 500-503.	1.8	30
10	Application of Molten Carbonate Fuel Cells in Cement Plants for CO2 Capture and Clean Power Generation. Energy Procedia, 2014, 63, 6517-6526.	1.8	23
11	Review, modeling, Heat Integration, and improved schemes of Rectisol®-based processes for CO2 capture. Applied Thermal Engineering, 2014, 70, 1123-1140.	3.0	91
12	Multi-objective Optimization of a Rectisol \hat{A}^{\circledast} Process. Computer Aided Chemical Engineering, 2014, , 1249-1254.	0.3	10
13	Vapour – Liquid Equilibrium Measurements of CO2 based Mixtures: Experimental Apparatus and Testing Procedures. Energy Procedia, 2014, 45, 1215-1224.	1.8	12
14	Numerical optimization of steam cycles and steam generators designs for coal to FT plants. Chemical Engineering Research and Design, 2013, 91, 1467-1482.	2.7	20
15	The Calcium Looping Process for Low CO2 Emission Cement and Power. Energy Procedia, 2013, 37, 7091-7099.	1.8	75
16	Design Criteria and Optimization of Heat Recovery Steam Cycles for High-Efficiency, Coal-Fired, Fischer-Tropsch Plants. , 2012, , .		3
17	Waste gasification vs. conventional Waste-To-Energy: A comparative evaluation of two commercial technologies. Waste Management, 2012, 32, 653-666.	3.7	116

18 Number concentration and chemical composition of ultrafine and nanoparticles from WTE (waste to) Tj ETQq0 0 0 ggBT /Overlock 10 Tf

STEFANO CONSONNI

#	Article	IF	CITATIONS
19	Supercritical pressure–density–temperature measurements on CO2–N2, CO2–O2 and CO2–Ar binary mixtures. Journal of Supercritical Fluids, 2012, 61, 34-43.	1.6	37
20	Numerical Optimization of Steam Cycles and Steam Generators Designs for a Coal to FT plant. Computer Aided Chemical Engineering, 2012, , 297-301.	0.3	0
21	Material and energy recovery in integrated waste management systems: The potential for energy recovery. Waste Management, 2011, 31, 2074-2084.	3.7	39
22	Numerical optimization of heat recovery steam cycles: Mathematical model, two-stage algorithm and applications. Computers and Chemical Engineering, 2011, 35, 2799-2823.	2.0	45
23	Shell coal IGCCS with carbon capture: Conventional gas quench vs. innovative configurations. Applied Energy, 2011, 88, 3978-3989.	5.1	79
24	Material and energy recovery in integrated waste management systems: Project overview and main results. Waste Management, 2011, 31, 2057-2065.	3.7	56
25	Shell Gasifier-Based Coal IGCC With CO2 Capture: Partial Water Quench vs. Novel Water-Gas Shift. , 2010, , .		2
26	Design and performance evaluation of a waste-to-energy plant integrated with a combined cycle. Energy, 2010, 35, 786-793.	4.5	39
27	Co-production of decarbonized synfuels and electricity from coal + biomass with CO ₂ capture and storage: an Illinois case study. Energy and Environmental Science, 2010, 3, 28-42.	15.6	106
28	A gasification-based biorefinery for the pulp and paper industry. Chemical Engineering Research and Design, 2009, 87, 1293-1317.	2.7	117
29	Comparison of coal IGCC with and without CO2 capture and storage: Shell gasification with standard vs. partial water quench. Energy Procedia, 2009, 1, 607-614.	1.8	71
30	Off-design performance of integrated waste-to-energy, combined cycle plants. Applied Thermal Engineering, 2007, 27, 712-721.	3.0	28
31	Chemical-Looping Combustion for Combined Cycles With CO2 Capture. Journal of Engineering for Gas Turbines and Power, 2006, 128, 525-534.	0.5	76
32	Decarbonized hydrogen and electricity from natural gas. International Journal of Hydrogen Energy, 2005, 30, 701-718.	3.8	56
33	Co-production of hydrogen, electricity and CO from coal with commercially ready technology. Part B: Economic analysis. International Journal of Hydrogen Energy, 2005, 30, 769-784.	3.8	269
34	Co-production of hydrogen, electricity and CO from coal with commercially ready technology. Part A: Performance and emissions. International Journal of Hydrogen Energy, 2005, 30, 747-767.	3.8	329
35	Thermodynamic, Economic and Environmental Benefits of the Integration Between Oil Refineries and IGCCs. , 2001, , .		Ο
36	Natural Gas Fired Combined Cycles With Low CO2 Emissions. Journal of Engineering for Gas Turbines and Power, 2000, 122, 429-436.	0.5	39

#	Article	IF	CITATIONS
37	Preliminary Economics of Black Liquor Gasifier/Gas Turbine Cogeneration at Pulp and Paper Mills. Journal of Engineering for Gas Turbines and Power, 2000, 122, 255-261.	0.5	33
38	Combined Cycles for High Performance, Low Cost, Low Environmental Impact Waste-to-Energy Systems. , 2000, , .		7
39	Natural Gas Fired Combined Cycles With Low CO2 Emissions. , 1999, , .		5
40	A comparative analysis of IGCCs with CO2 sequestration. , 1999, , 107-112.		13
41	Shift Reactors and Physical Absorption for Low-CO2 Emission IGCCs. , 1998, , .		9
42	Externally Fired Combined Cycles (EFCC): Part B — Alternative Configurations and Cost Projections. , 1996, , .		3
43	Externally Fired Combined Cycles (EFCC): Part A $\hat{a} \in \mathbb{C}$ Thermodynamics and Technological Issues. , 1996, , .		7
44	Predicting the Ultimate Performance of Advanced Power Cycles Based on Very High Temperature Gas Turbine Engines. , 1993, , .		25
45	Hot showers for ethanol rich countries. Energy, 1990, 15, 821-829.	4.5	1