Alessandro Pandini

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4386776/alessandro-pandini-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

38
papers

1,171
citations

16
h-index

34
g-index

44
ext. papers

2,326
ext. citations

3,5
avg, IF

L-index

#	Paper	IF	Citations
38	PathDetect-SOM: A Neural Network Approach for the Identification of Pathways in Ligand Binding Simulations <i>Journal of Chemical Theory and Computation</i> , 2022 ,	6.4	1
37	Reconstruction of ARNT PAS-B Unfolding Pathways by Steered Molecular Dynamics and Artificial Neural Networks. <i>Journal of Chemical Theory and Computation</i> , 2021 , 17, 2080-2089	6.4	3
36	Machine Learning Prediction of Allosteric Drug Activity from Molecular Dynamics. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 3724-3732	6.4	14
35	Dynamic Profiling of ECoronavirus 3CL M Protease Ligand-Binding Sites. <i>Journal of Chemical Information and Modeling</i> , 2021 , 61, 3058-3073	6.1	9
34	Structure, Dynamics and Cellular Insight Into Novel Substrates of the Type II Secretion System. <i>Frontiers in Molecular Biosciences</i> , 2020 , 7, 112	5.6	4
33	Structure-based enzyme engineering improves donor-substrate recognition of Arabidopsis thaliana glycosyltransferases. <i>Biochemical Journal</i> , 2020 , 477, 2791-2805	3.8	13
32	Allosteric Priming of E. coli CheY by the Flagellar Motor Protein FliM. <i>Biophysical Journal</i> , 2020 , 119, 1	10 8. 412	222
31	Conformational coupling by trans-phosphorylation in calcium calmodulin dependent kinase II. <i>PLoS Computational Biology</i> , 2019 , 15, e1006796	5	5
30	In silico identification of rescue sites by double force scanning. <i>Bioinformatics</i> , 2018 , 34, 207-214	7.2	8
29	Ligand-induced perturbation of the HIF-2EARNT dimer dynamics. <i>PLoS Computational Biology</i> , 2018 , 14, e1006021	5	14
28	Deep Autoencoders for Additional Insight into Protein Dynamics. <i>Lecture Notes in Computer Science</i> , 2018 , 79-89	0.9	4
27	Binding of Myomesin to Obscurin-Like-1 at the Muscle M-Band Provides a Strategy for Isoform-Specific Mechanical Protection. <i>Structure</i> , 2017 , 25, 107-120	5.2	17
26	Using Computational Intelligence Models for Additional Insight into Protein Structure 2017 , 62, 107-1	20	3
25	Using Local States To Drive the Sampling of Global Conformations in Proteins. <i>Journal of Chemical Theory and Computation</i> , 2016 , 12, 1368-79	6.4	12
24	The Gearbox of the Bacterial Flagellar Motor Switch. <i>Structure</i> , 2016 , 24, 1209-20	5.2	23
23	Bridging topological and functional information in protein interaction networks by short loops profiling. <i>Scientific Reports</i> , 2015 , 5, 8540	4.9	14
22	The crystal structure of the human titin:obscurin complex reveals a conserved yet specific muscle M-band zipper module. <i>Journal of Molecular Biology</i> , 2015 , 427, 718-736	6.5	16

(2007-2015)

21	The Phylogenetic Signature Underlying ATP Synthase c-Ring Compliance. <i>Biophysical Journal</i> , 2015 , 109, 975-87	2.9	9
20	Coevolved Mutations Reveal Distinct Architectures for Two Core Proteins in the Bacterial Flagellar Motor. <i>PLoS ONE</i> , 2015 , 10, e0142407	3.7	7
19	BCR-ABL residues interacting with ponatinib are critical to preserve the tumorigenic potential of the oncoprotein. <i>FASEB Journal</i> , 2014 , 28, 1221-36	0.9	25
18	Comparative analysis of homology models of the AH receptor ligand binding domain: verification of structure-function predictions by site-directed mutagenesis of a nonfunctional receptor. <i>Biochemistry</i> , 2013 , 52, 714-25	3.2	55
17	Specialized Dynamical Properties of Promiscuous Residues Revealed by Simulated Conformational Ensembles. <i>Journal of Chemical Theory and Computation</i> , 2013 , 9, 5127-5147	6.4	30
16	GSATools: analysis of allosteric communication and functional local motions using a structural alphabet. <i>Bioinformatics</i> , 2013 , 29, 2053-5	7.2	38
15	Artificial neural networks for efficient clustering of conformational ensembles and their potential for medicinal chemistry. <i>Current Topics in Medicinal Chemistry</i> , 2013 , 13, 642-51	3	14
14	Detection of Allosteric Signal Transmission by Information-Theoretic Analysis of Protein Dynamics. <i>Biophysical Journal</i> , 2012 , 102, 225a	2.9	
13	Functional annotation of the mesophilic-like character of mutants in a cold-adapted enzyme by self-organising map analysis of their molecular dynamics. <i>Molecular BioSystems</i> , 2012 , 8, 2680-91		11
12	Detection of allosteric signal transmission by information-theoretic analysis of protein dynamics. <i>FASEB Journal</i> , 2012 , 26, 868-81	0.9	86
11	Conformational and functional analysis of molecular dynamics trajectories by self-organising maps. <i>BMC Bioinformatics</i> , 2011 , 12, 158	3.6	33
10	Predicting the accuracy of protein-ligand docking on homology models. <i>Journal of Computational Chemistry</i> , 2011 , 32, 81-98	3.5	57
9	Structural alphabets derived from attractors in conformational space. <i>BMC Bioinformatics</i> , 2010 , 11, 97	3.6	41
8	Detection of the TCDD binding-fingerprint within the Ah receptor ligand binding domain by structurally driven mutagenesis and functional analysis. <i>Biochemistry</i> , 2009 , 48, 5972-83	3.2	89
7	Structural and functional characterization of the aryl hydrocarbon receptor ligand binding domain by homology modeling and mutational analysis. <i>Biochemistry</i> , 2007 , 46, 696-708	3.2	97
6	Computational approaches to shed light on molecular mechanisms in biological processes. <i>Theoretical Chemistry Accounts</i> , 2007 , 117, 723-741	1.9	8
5	MinSet: a general approach to derive maximally representative database subsets by using fragment dictionaries and its application to the SCOP database. <i>Bioinformatics</i> , 2007 , 23, 515-6	7.2	16
4	Detecting similarities among distant homologous proteins by comparison of domain flexibilities. <i>Protein Engineering, Design and Selection</i> , 2007 , 20, 285-99	1.9	19

3	Conservation and specialization in PAS domain dynamics. <i>Protein Engineering, Design and Selection</i> , 2005 , 18, 127-37	1.9	31
2	Ligand binding and activation of the Ah receptor. Chemico-Biological Interactions, 2002, 141, 3-24	5	342
1	Allosteric priming ofE. coliCheY by the flagellar motor protein FliM		1