Deanne Francis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4386727/publications.pdf

Version: 2024-02-01

		1040056	996975	
16	526	9	15	
papers	citations	h-index	g-index	
18	18	18	1004	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Genetic variation of macronutrient tolerance in Drosophila melanogaster. Nature Communications, 2022, 13, 1637.	12.8	9
2	Genome-wide analysis in <i>Drosophila</i> reveals diet-by-gene interactions and uncovers diet-responsive genes. G3: Genes, Genomes, Genetics, 2021, 11, .	1.8	3
3	Dissecting the biology of mTORC1 beyond rapamycin. Science Signaling, 2021, 14, eabe0161.	3.6	10
4	Lactate production is a prioritized feature of adipocyte metabolism. Journal of Biological Chemistry, 2020, 295, 83-98.	3.4	44
5	Insulin signaling requires glucose to promote lipid anabolism in adipocytes. Journal of Biological Chemistry, 2020, 295, 13250-13266.	3.4	31
6	A modified gas-trapping method for high-throughput metabolic experiments inDrosophila melanogaster. BioTechniques, 2019, 67, 123-125.	1.8	7
7	Phosphoproteomics reveals conserved exerciseâ€stimulated signaling and AMPK regulation of storeâ€operated calcium entry. EMBO Journal, 2019, 38, e102578.	7.8	54
8	The regulation of cell size and branch complexity in the terminal cells of the Drosophila tracheal system. Developmental Biology, 2019, 451, 79-85.	2.0	7
9	Global redox proteome and phosphoproteome analysis reveals redox switch in Akt. Nature Communications, 2019, 10, 5486.	12.8	89
10	RagC phosphorylation autoregulates <scp>mTOR</scp> complex 1. EMBO Journal, 2019, 38, .	7.8	26
11	Compensatory branching morphogenesis of stalk cells in the <i>Drosophila</i> trachea. Development (Cambridge), 2015, 142, 2048-2057.	2.5	18
12	Wdpcp, a PCP Protein Required for Ciliogenesis, Regulates Directional Cell Migration and Cell Polarity by Direct Modulation of the Actin Cytoskeleton. PLoS Biology, 2013, 11, e1001720.	5.6	87
13	Disruption of Mks1 localization to the mother centriole causes cilia defects and developmental malformations in Meckel-Gruber syndrome. DMM Disease Models and Mechanisms, 2011, 4, 43-56.	2.4	78
14	Disruption of Mks1 localization to the mother centriole causes cilia defects and developmental malformations in Meckel–Gruber syndrome. Journal of Cell Science, 2011, 124, e1-e1.	2.0	0
15	Disruption of Mks1 localization to the mother centriole causes cilia defects and developmental malformations in Meckel-Gruber syndrome. Development (Cambridge), 2011, 138, e0406-e0406.	2.5	0
16	Massively parallel sequencing identifies the gene <i>Megf8</i> with ENU-induced mutation causing heterotaxy. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3219-3224.	7.1	57