
Bini Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4386606/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Changes in phenolic compounds and their antioxidant capacities in jujube (Ziziphus jujuba Miller) during three edible maturity stages. LWT - Food Science and Technology, 2016, 66, 56-62.	2.5	117
2	Quality characteristics and antioxidant activities of goat milk yogurt with added jujube pulp. Food Chemistry, 2019, 277, 238-245.	4.2	96
3	Antioxidant activities and phenolic compounds of date plum persimmon (Diospyros lotus L.) fruits. Journal of Food Science and Technology, 2014, 51, 950-956.	1.4	61
4	Bacterial diversity in goat milk from the Guanzhong area of China. Journal of Dairy Science, 2017, 100, 7812-7824.	1.4	60
5	Protective effects of buckwheat honey on DNA damage induced by hydroxyl radicals. Food and Chemical Toxicology, 2012, 50, 2766-2773.	1.8	55
6	An electrochemical aptasensor based on DNA-AuNPs-HRP nanoprobes and exonuclease-assisted signal amplification for detection of aflatoxin B1. Food Control, 2020, 109, 106902.	2.8	47
7	A sandwich-type phenolic biosensor based on tyrosinase embedding into single-wall carbon nanotubes and polyaniline nanocomposites. Sensors and Actuators B: Chemical, 2013, 186, 417-422.	4.0	42
8	Influence of Bactrian camel milk on the gut microbiota. Journal of Dairy Science, 2018, 101, 5758-5769.	1.4	42
9	Drying and decontamination of raw pistachios with sequential infrared drying, tempering and hot air drying. International Journal of Food Microbiology, 2017, 246, 85-91.	2.1	37
10	Effect of 24-epibrassinolide treatment on the metabolism of eggplant fruits in relation to development of pulp browning under chilling stress. Journal of Food Science and Technology, 2014, 52, 3394-401.	1.4	34
11	Simultaneous Determination of Six Phenolic Compounds in Jujube by LC-ECD. Chromatographia, 2010, 71, 703-707.	0.7	31
12	Feasibility of jujube peeling using novel infrared radiation heating technology. LWT - Food Science and Technology, 2016, 69, 458-467.	2.5	30
13	Synthesis of Ag@AgCl nanoboxes, and their application to electrochemical sensing of hydrogen peroxide at very low potential. Mikrochimica Acta, 2015, 182, 61-68.	2.5	27
14	Resveratrol and Oxyresveratrol Activate Thermogenesis via Different Transcriptional Coactivators in High-Fat Diet-Induced Obese Mice. Journal of Agricultural and Food Chemistry, 2019, 67, 13605-13616.	2.4	27
15	Optimized Extraction of Phenolics from Jujube Peel and Their Anti-inflammatory Effects in LPS-Stimulated Murine Macrophages. Journal of Agricultural and Food Chemistry, 2019, 67, 1666-1673.	2.4	24
16	Combined soil and foliar ZnSO ₄ application improves wheat grain Zn concentration and Zn fractions in a calcareous soil. European Journal of Soil Science, 2020, 71, 681-694.	1.8	22
17	Quantitative Assessment of Phenolic Acids, Flavonoids and Antioxidant Activities of Sixteen Jujube Cultivars from China. Plant Foods for Human Nutrition, 2020, 75, 154-160.	1.4	22
18	Physicochemical and textural characteristics and volatile compounds of semihard goat cheese as affected by starter cultures. Journal of Dairy Science, 2021, 104, 270-280.	1.4	22

#	Article	IF	CITATIONS
19	Extraction Optimization and Functional Properties of Proteins from Kiwi Fruit(<i>Actinidia) Tj ETQq1 1 0.784314</i>	rgBŢ /(Dverlggk 10 Tf 5
20	A sensitive electrochemical aptasensor based on MB-anchored GO for the rapid detection of Cronobacter sakazakii. Journal of Solid State Electrochemistry, 2019, 23, 3391-3398.	1.2	18
21	Effects of ZnSO ₄ and Znâ€EDTA applied by broadcasting or by banding on soil Zn fractions and Zn uptake by wheat (<i>Triticum aestivum</i> L.) under greenhouse conditions. Journal of Plant Nutrition and Soil Science, 2019, 182, 307-317.	1.1	17

 $_{22}$ Effects of ZnSO4 and Zn-EDTA broadcast or banded to soil on Zn bioavailability in wheat (Triticum) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 $_{12}^{22}$

23	Whole-genome sequencing reveals the mechanisms for evolution of streptomycin resistance in Lactobacillus plantarum. Journal of Dairy Science, 2018, 101, 2867-2874.	1.4	14
24	Laboratory Evolution Assays and Whole-Genome Sequencing for the Development and Safety Evaluation of Lactobacillus plantarum With Stable Resistance to Gentamicin. Frontiers in Microbiology, 2019, 10, 1235.	1.5	14
25	Zinc in cereal grains: Concentration, distribution, speciation, bioavailability, and barriers to transport from roots to grains in wheat. Critical Reviews in Food Science and Nutrition, 2022, 62, 7917-7928.	5.4	11
26	Removal of Chloramphenicol by Macroporous Adsorption Resins in Honey: A Novel Approach on Reutilization of Antibiotics Contaminated Honey. Journal of Food Science, 2012, 77, T169-72.	1.5	10
27	Evaluation of kanamycin and neomycin resistance in Lactobacillus plantarum using experimental evolution and whole-genome sequencing. Food Control, 2019, 98, 262-267.	2.8	10
28	A novel electrochemical aptasensor based on layer-by-layer assembly of DNA-Au@Ag conjugates for rapid detection of aflatoxin M1 in milk samples. Journal of Dairy Science, 2022, 105, 1966-1977.	1.4	10
29	Effects of the processing steps on chlorpyrifos levels during honey production. Food Control, 2010, 21, 1497-1499.	2.8	9
30	Genome-wide analysis of fermentation and probiotic trait stability in Lactobacillus plantarum during continuous culture. Journal of Dairy Science, 2020, 103, 117-127.	1.4	9
31	An ultrasensitive sandwich-type electrochemical aptasensor using silver nanoparticle/titanium carbide nanocomposites for the determination of Staphylococcus aureus in milk. Mikrochimica Acta, 2022, 189, .	2.5	5
32	Double Biocatalysis Signal Amplification Glucose Biosensor Based on Porous Graphene. Materials, 2017, 10, 1139.	1.3	4
33	Effects of goat milk fractions on the stability of IGF-I in simulated gastrointestinal conditions. LWT - Food Science and Technology, 2018, 91, 229-234.	2.5	3