Bruno Jean

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4386537/publications.pdf Version: 2024-02-01

RRUNO IEAN

#	Article	IF	CITATIONS
1	Current characterization methods for cellulose nanomaterials. Chemical Society Reviews, 2018, 47, 2609-2679.	18.7	690
2	Preparation By Grafting Onto, Characterization, and Properties of Thermally Responsive Polymer-Decorated Cellulose Nanocrystals. Biomacromolecules, 2010, 11, 3652-3659.	2.6	213
3	Preparation, morphology and structure of cellulose nanocrystals from bamboo fibers. Cellulose, 2012, 19, 1527-1536.	2.4	176
4	Dynamically Controlled Iridescence of Cholesteric Cellulose Nanocrystal Suspensions Using Electric Fields. Advanced Materials, 2017, 29, 1606208.	11.1	126
5	Non-Electrostatic Building of Biomimetic Celluloseâ^'Xyloglucan Multilayers. Langmuir, 2009, 25, 3920-3923.	1.6	97
6	Structural Details of Cellulose Nanocrystals/Polyelectrolytes Multilayers Probed by Neutron Reflectivity and AFM. Langmuir, 2008, 24, 3452-3458.	1.6	93
7	First experimental evidence of a giant permanent electric-dipole moment in cellulose nanocrystals. Europhysics Letters, 2014, 107, 28006.	0.7	93
8	Amorphous Characteristics of an Ultrathin Cellulose Film. Biomacromolecules, 2011, 12, 770-777.	2.6	92
9	Effects of Sodium Dodecyl Sulfate on the Adsorption of Poly(N-isopropylacrylamide) at the Airâ^'Water Interface. Langmuir, 1999, 15, 7585-7590.	1.6	81
10	Highly absorbent cellulose nanofibrils aerogels prepared by supercritical drying. Carbohydrate Polymers, 2020, 229, 115560.	5.1	56
11	Tunable Aggregation and Gelation of Thermoresponsive Suspensions of Polymer-Grafted Cellulose Nanocrystals. Biomacromolecules, 2016, 17, 2112-2119.	2.6	55
12	Surface peeling of cellulose nanocrystals resulting from periodate oxidation and reductive amination with water-soluble polymers. Cellulose, 2015, 22, 3701-3714.	2.4	53
13	Impact of sonication on the rheological and colloidal properties of highly concentrated cellulose nanocrystal suspensions. Cellulose, 2019, 26, 7619-7634.	2.4	49
14	Adjustment of the Chiral Nematic Phase Properties of Cellulose Nanocrystals by Polymer Grafting. Langmuir, 2016, 32, 4305-4312.	1.6	42
15	Xyloglucan–Cellulose Nanocrystal Multilayered Films: Effect of Film Architecture on Enzymatic Hydrolysis. Biomacromolecules, 2013, 14, 3599-3609.	2.6	41
16	Nanocellulose/polymer multilayered thin films: tunable architectures towards tailored physical properties. Nordic Pulp and Paper Research Journal, 2014, 29, 19-30.	0.3	40
17	Coloured Semiâ€reflective Thin Films for Biomassâ€hydrolyzing Enzyme Detection. Advanced Materials, 2011, 23, 3791-3795.	11.1	39
18	SANS Measurements of Semiflexible Xyloglucan Polysaccharide Chains in Water Reveal Their Self-Avoiding Statistics. Biomacromolecules, 2011, 12, 3330-3336.	2.6	38

Bruno Jean

#	Article	IF	CITATIONS
19	Ice-templated freeze-dried cryogels from tunicate cellulose nanocrystals with high specific surface area and anisotropic morphological and mechanical properties. Cellulose, 2020, 27, 233-247.	2.4	38
20	Self-Assembly of Amphiphilic Glycoconjugates into Lectin-Adhesive Nanoparticles. Langmuir, 2012, 28, 1418-1426.	1.6	36
21	pH-Sensitive Interactions between Cellulose Nanocrystals and DOPC Liposomes. Biomacromolecules, 2017, 18, 2918-2927.	2.6	34
22	Temperature-Controlled Star-Shaped Cellulose Nanocrystal Assemblies Resulting from Asymmetric Polymer Grafting. ACS Macro Letters, 2019, 8, 345-351.	2.3	34
23	Periodate Oxidation Followed by NaBH ₄ Reduction Converts Microfibrillated Cellulose into Sterically Stabilized Neutral Cellulose Nanocrystal Suspensions. Langmuir, 2018, 34, 11066-11075.	1.6	33
24	Antimicrobial Cellulose Nanofibril Porous Materials Obtained by Supercritical Impregnation of Thymol. ACS Applied Bio Materials, 2020, 3, 2965-2975.	2.3	32
25	Breakdown and buildup mechanisms of cellulose nanocrystal suspensions under shear and upon relaxation probed by SAXS and SALS. Carbohydrate Polymers, 2021, 260, 117751.	5.1	31
26	Tailoring Rheological Properties of Thermoresponsive Hydrogels through Block Copolymer Adsorption to Cellulose Nanocrystals. Biomacromolecules, 2019, 20, 2545-2556.	2.6	27
27	Ultrastructural Characterization of the Core–Shell Structure of a Wide Range of Periodate-Oxidized Cellulose from Different Native Sources by Solid-State ¹³ C CP-MAS NMR. ACS Sustainable Chemistry and Engineering, 2019, 7, 412-420.	3.2	27
28	Adsorption versus grafting of poly(N-Isopropylacrylamide) in aqueous conditions on the surface of cellulose nanocrystals. Carbohydrate Polymers, 2019, 210, 100-109.	5.1	26
29	Biophysical analysis of the plant-specific GIPC sphingolipids reveals multiple modes of membrane regulation. Journal of Biological Chemistry, 2021, 296, 100602.	1.6	24
30	Self-assembled carbohydrate-based micelles for lectin targeting. Soft Matter, 2011, 7, 3453.	1.2	23
31	Foam Films from Thermosensitive PNIPAM and SDS Solutions. Langmuir, 2009, 25, 3966-3971.	1.6	22
32	Influence of cellulose nanocrystals concentration and ionic strength on the elaboration of cellulose nanocrystals–xyloglucan multilayered thin films. Journal of Colloid and Interface Science, 2015, 460, 214-220.	5.0	17
33	Noninteracting versus Interacting Poly(N-isopropylacrylamide)-Surfactant Mixtures at the Airâ^'Water Interface. Journal of Physical Chemistry B, 2005, 109, 5162-5167.	1.2	16
34	Multifunctionalization of cellulose microfibrils through a cascade pathway entailing the sustainable Passerini multi-component reaction. Green Chemistry, 2020, 22, 7059-7069.	4.6	16
35	Small-Angle Neutron Scattering Reveals the Structural Details of Thermosensitive Polymer-Grafted Cellulose Nanocrystal Suspensions. Langmuir, 2020, 36, 8511-8519.	1.6	15
36	Microphase separation of cationic poly(N -isopropylacrylamide) copolymers in water: Effect of the migration of charges. Colloid and Polymer Science, 2002, 280, 908-914.	1.0	13

Bruno Jean

#	Article	IF	CITATIONS
37	Mechanism of Associations of Neutral Semiflexible Biopolymers in Water: The Xyloglucan Case Reveals Inherent Links. Macromolecular Chemistry and Physics, 2013, 214, 2312-2323.	1.1	13
38	Structural Variations in Hybrid All-Nanoparticle Gibbsite Nanoplatelet/Cellulose Nanocrystal Multilayered Films. Langmuir, 2017, 33, 7896-7907.	1.6	13
39	Antibacterial Cellulose Nanopapers via Aminosilane Grafting in Supercritical Carbon Dioxide. ACS Applied Bio Materials, 2020, 3, 8402-8413.	2.3	13
40	Nanochannels in track-etched membranes. Journal of Applied Crystallography, 2003, 36, 649-651.	1.9	10
41	Effects of sodium dodecyl sulfate on poly(N -isopropylacrylamide) adsorption at the air-water interface above the lower critical solubility temperature. Colloid and Polymer Science, 2002, 280, 689-694.	1.0	8
42	Hybrid Gibbsite Nanoplatelet/Cellulose Nanocrystal Multilayered Coatings for Oxygen Barrier Improvement. Frontiers in Chemistry, 2019, 7, 507.	1.8	8
43	Layered organization of anisometric cellulose nanocrystals and beidellite clay particles accumulated near the membrane surface during cross-flow ultrafiltration: In situ SAXS and ex situ SEM/WAXD characterization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 584, 124030.	2.3	8
44	Temperature-triggered formation of a cellulose II nanocrystal network through regioselective derivatization. Nanoscale, 2021, 13, 6447-6460.	2.8	8
45	Separation of Cellulose Nanocrystals. Materials and Energy, 2014, , 73-87.	2.5	7
46	Deposition of Cellulose Nanocrystals onto Supported Lipid Membranes. Langmuir, 2020, 36, 1474-1483.	1.6	6
47	Investigation of perfluorosulfonic acid ionomer solutions by 19 f NMR and DLS: Establishment of an accurate quantification protocol. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 2210-2222.	2.4	3