Yi-Ping Lu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4386533/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Promising New Class of High-Temperature Alloys: Eutectic High-Entropy Alloys. Scientific Reports, 2014, 4, 6200.	1.6	998
2	Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range. Acta Materialia, 2017, 124, 143-150.	3.8	747
3	Microstructural origins of high strength and high ductility in an AlCoCrFeNi2.1 eutectic high-entropy alloy. Acta Materialia, 2017, 141, 59-66.	3.8	501
4	Promising properties and future trend of eutectic high entropy alloys. Scripta Materialia, 2020, 187, 202-209.	2.6	308
5	A promising new class of irradiation tolerant materials: Ti2ZrHfV0.5Mo0.2 high-entropy alloy. Journal of Materials Science and Technology, 2019, 35, 369-373.	5.6	266
6	Microstructure and mechanical properties of multi-component AlCrFeNiMox high-entropy alloys. Journal of Alloys and Compounds, 2013, 573, 96-101.	2.8	229
7	Effect of vanadium addition on the microstructure and properties of AlCoCrFeNi high entropy alloy. Materials & Design, 2014, 57, 67-72.	5.1	222
8	Effects of electro-negativity on the stability of topologically close-packed phase in high entropy alloys. Intermetallics, 2014, 52, 105-109.	1.8	210
9	A new strategy to design eutectic high-entropy alloys using mixing enthalpy. Intermetallics, 2017, 91, 124-128.	1.8	203
10	A novel bulk eutectic high-entropy alloy with outstanding as-cast specific yield strengths at elevated temperatures. Scripta Materialia, 2021, 204, 114132.	2.6	192
11	Effect of Niobium on Microstructure and Properties of the CoCrFeNb x Ni High Entropy Alloys. Journal of Materials Science and Technology, 2017, 33, 712-717.	5.6	180
12	A new strategy to design eutectic high-entropy alloys using simple mixture method. Materials and Design, 2018, 142, 101-105.	3.3	172
13	A multi-component AlCrFe2Ni2 alloy with excellent mechanical properties. Materials Letters, 2016, 169, 62-64.	1.3	150
14	Microstructures and mechanical properties of Co2MoxNi2VWx eutectic high entropy alloys. Materials and Design, 2016, 109, 539-546.	3.3	132
15	Effects of Ta addition on the microstructures and mechanical properties of CoCrFeNi high entropy alloy. Materials Chemistry and Physics, 2018, 210, 43-48.	2.0	127
16	Annealing effects on the microstructure and properties of bulk high-entropy CoCrFeNiTi0.5 alloy casting ingot. Intermetallics, 2014, 44, 37-43.	1.8	125
17	Tribological behavior of an AlCoCrFeNi2.1 eutectic high entropy alloy sliding against different counterfaces. Tribology International, 2021, 153, 106599.	3.0	112
18	A novel Cu-bearing high-entropy alloy with significant antibacterial behavior against corrosive marine biofilms. Journal of Materials Science and Technology, 2020, 46, 201-210.	5.6	108

#	Article	IF	CITATIONS
19	Direct solidification of bulk ultrafine-microstructure eutectic high-entropy alloys with outstanding thermal stability. Scripta Materialia, 2019, 165, 145-149.	2.6	104
20	Faceted Kurdjumov-Sachs interface-induced slip continuity in the eutectic high-entropy alloy, AlCoCrFeNi2.1. Journal of Materials Science and Technology, 2021, 65, 216-227.	5.6	95
21	Microstructure and Mechanical Properties of a CoFeNi2V0.5Nb0.75 Eutectic High Entropy Alloy in As-cast and Heat-treated Conditions. Journal of Materials Science and Technology, 2016, 32, 245-250.	5.6	94
22	A novel high-entropy alloy composite coating with core-shell structures prepared by plasma cladding. Vacuum, 2021, 184, 109905.	1.6	94
23	Effects of Nb addition on structural evolution and properties of the CoFeNi2V0.5 high-entropy alloy. Applied Physics A: Materials Science and Processing, 2015, 119, 291-297.	1.1	93
24	Deformation mechanism during high-temperature tensile test in an eutectic high-entropy alloy AlCoCrFeNi2.1. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 724, 148-155.	2.6	90
25	Effect of carbon addition on the microstructure and mechanical properties of CoCrFeNi high entropy alloy. Science China Technological Sciences, 2018, 61, 117-123.	2.0	79
26	A Criterion for Topological Close-Packed Phase Formation in High Entropy Alloys. Entropy, 2015, 17, 2355-2366.	1.1	77
27	The interaction and migration of deformation twin in an eutectic high-entropy alloy AlCoCrFeNi2.1. Journal of Materials Science and Technology, 2019, 35, 902-906.	5.6	67
28	Effects of annealing treatment on microstructure and hardness of bulk AlCrFeNiMo0.2 eutectic high-entropy alloy. Materials and Design, 2015, 82, 91-97.	3.3	66
29	The superior hydrogen-generation performance of multi-component Al alloys by the hydrolysis reaction. International Journal of Hydrogen Energy, 2019, 44, 3527-3537.	3.8	63
30	A novel ZrNbMoTaW refractory high-entropy alloy with in-situ forming heterogeneous structure. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 827, 142061.	2.6	59
31	Mechanical Properties Improvement of AlCrFeNi2Ti0.5 High Entropy Alloy through Annealing Design and its Relationship with its Particle-reinforced Microstructures. Journal of Materials Science and Technology, 2015, 31, 397-402.	5.6	58
32	Ductile and ultrahigh-strength eutectic high-entropy alloys by large-volume 3D printing. Journal of Materials Science and Technology, 2022, 126, 15-21.	5.6	57
33	Microstructure and tribological properties of AlCrFe2Ni2W0.2Mo0.75 high-entropy alloy coating prepared by laser cladding in seawater, NaCl solution and deionized water. Surface and Coatings Technology, 2020, 400, 126214.	2.2	54
34	Microstructure and mechanical properties of C Hf0.25NbTaW0.5 refractory high-entropy alloys at room and high temperatures. Journal of Materials Science and Technology, 2022, 97, 229-238.	5.6	52
35	Preparing bulk ultrafine-microstructure high-entropy alloys <i>via</i> direct solidification. Nanoscale, 2018, 10, 1912-1919.	2.8	51
36	The mechanical and oxidation properties of novel B2-ordered Ti2ZrHf0.5VNb0.5Alx refractory high-entropy alloys. Materials Characterization, 2021, 178, 111287.	1.9	51

#	Article	IF	CITATIONS
37	A novel Co-free Al0.75CrFeNi eutectic high entropy alloy with superior mechanical properties. Journal of Alloys and Compounds, 2022, 902, 163814.	2.8	51
38	A promising structure for fabricating high strength and high electrical conductivity copper alloys. Scientific Reports, 2016, 6, 20799.	1.6	50
39	Extraordinary ductility and strain hardening of Cr26Mn20Fe20Co20Ni14 TWIP high-entropy alloy by cooperative planar slipping and twinning. Materialia, 2019, 8, 100485.	1.3	49
40	Effect of minor B addition on microstructure and properties of AlCoCrFeNi multi-compenent alloy. Transactions of Nonferrous Metals Society of China, 2015, 25, 2958-2964.	1.7	46
41	Effects of Tungsten on Microstructure and Mechanical Properties of CrFeNiV0.5W x and CrFeNi2V0.5W x High-Entropy Alloys. Journal of Materials Engineering and Performance, 2015, 24, 4594-4600.	1.2	46
42	Effects of Tungsten Addition on the Microstructure and Mechanical Properties of Near-Eutectic AlCoCrFeNi2 High-Entropy Alloy. Journal of Materials Engineering and Performance, 2018, 27, 109-115.	1.2	45
43	Simultaneously enhanced strength-ductility of AlCoCrFeNi2.1 eutectic high-entropy alloy via additive manufacturing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 830, 142327.	2.6	45
44	A Novel Series of Refractory High-Entropy Alloys Ti2ZrHf0.5VNbx with High Specific Yield Strength and Good Ductility. Acta Metallurgica Sinica (English Letters), 2019, 32, 925-931.	1.5	42
45	Effect of Ti content on microstructure and properties of TixZrVNb refractory high-entropy alloys. International Journal of Minerals, Metallurgy and Materials, 2020, 27, 1318-1325.	2.4	41
46	The Exceptional Strong Face-centered Cubic Phase and Semi-coherent Phase Boundary in a Eutectic Dual-phase High Entropy Alloy AlCoCrFeNi. Scientific Reports, 2018, 8, 14910.	1.6	39
47	Effects of Mo on microstructure and mechanical properties of Fe2Ni2CrMox eutectic high entropy alloys. Materials Chemistry and Physics, 2021, 260, 124175.	2.0	36
48	Hot deformation behavior and microstructure evolution of non-equimolar Ti2ZrHfV0.5Ta0.2 refractory high-entropy alloy. Intermetallics, 2022, 146, 107586.	1.8	35
49	Fabrication process and bending properties of carbon fibers reinforced Al-alloy matrix composites. Journal of Materials Processing Technology, 2016, 231, 366-373.	3.1	34
50	Surface modification for AlCoCrFeNi2.1 eutectic high-entropy alloy via laser remelting technology and subsequent aging heat treatment. Journal of Alloys and Compounds, 2022, 894, 162380.	2.8	34
51	Enhanced antibacterial behavior of a novel Cu-bearing high-entropy alloy. Journal of Materials Science and Technology, 2022, 117, 158-166.	5.6	33
52	Effect of Zr on the as-cast microstructure and mechanical properties of lightweight Ti2VNbMoZrx refractory high-entropy alloys. International Journal of Refractory Metals and Hard Materials, 2022, 103, 105762.	1.7	32
53	Microstructures and Wear Resistance of AlCrFeNi2W0.2Nbx High-Entropy Alloy Coatings Prepared by Laser Cladding. Journal of Thermal Spray Technology, 2019, 28, 1318-1329.	1.6	31
54	Effect of plasma remelting on microstructure and properties of a CoCrCuNiAl0.5 high-entropy alloy prepared by spark plasma sintering. Journal of Materials Science, 2021, 56, 5878-5898.	1.7	31

#	Article	IF	CITATIONS
55	Effect of electromagnetic stirring on microstructure and properties of Al0.5CoCrCuFeNi alloy. Procedia Engineering, 2012, 27, 1129-1134.	1.2	28
56	Composition, Microstructure, Phase Constitution and Fundamental Physicochemical Properties of Low-Melting-Point Multi-Component Eutectic Alloys. Journal of Materials Science and Technology, 2017, 33, 131-154.	5.6	28
57	Novel (CoFe2NiV0.5Mo0.2)100â^'xNbx Eutectic High-Entropy Alloys with Excellent Combination of Mechanical and Corrosion Properties. Acta Metallurgica Sinica (English Letters), 2020, 33, 1046-1056.	1.5	28
58	Liquid rolling of woven carbon fibers reinforced Al5083-matrix composites. Materials and Design, 2016, 95, 89-96.	3.3	27
59	Fabrication of woven carbon fibers reinforced Al–Mg (95–5 wt%) matrix composites by an electromagnetic casting process. Journal of Materials Processing Technology, 2015, 226, 78-84.	3.1	26
60	Effect of Sc and Y addition on the microstructure and properties of HCP-structured high-entropy alloys. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	26
61	Tungsten-containing high-entropy alloys: a focused review of manufacturing routes, phase selection, mechanical properties, and irradiation resistance properties. Tungsten, 2021, 3, 181-196.	2.0	26
62	Effects of Fe Content on Microstructures and Properties of AlCoCrFe x Ni High-Entropy Alloys. Arabian Journal for Science and Engineering, 2015, 40, 3657-3663.	1.1	24
63	Cu-bearing high-entropy alloys with excellent antiviral properties. Journal of Materials Science and Technology, 2021, 84, 59-64.	5.6	22
64	Effects of Ta Addition on the Microstructure and Mechanical Properties of CoCu0.5FeNi High-Entropy Alloy. Journal of Materials Engineering and Performance, 2019, 28, 7642-7648.	1.2	21
65	Tuning deformation mechanisms of face-centered-cubic high-entropy alloys via boron doping. Journal of Alloys and Compounds, 2022, 911, 165103.	2.8	19
66	Antibacterial activities of a novel Cu-bearing high-entropy alloy against multi-drug-resistant Acinetobacter baumannii and Staphylococcus aureus. Rare Metals, 2022, 41, 570-579.	3.6	17
67	Microstructure and mechanical properties of Ti3V2NbAl Ni low-density refractory multielement alloys. Intermetallics, 2021, 133, 107187.	1.8	16
68	Infiltration behavior and mechanism in semi-solid rolling of carbon fibers reinforced Al-matrix composite. Materials and Design, 2019, 182, 108102.	3.3	15
69	Electroless nickel plating and spontaneous infiltration behavior of woven carbon fibers. Materials and Design, 2020, 186, 108301.	3.3	15
70	Novel as-cast AlCrFe2Ni2Ti05 high-entropy alloy with excellent mechanical properties. International Journal of Minerals, Metallurgy and Materials, 2020, 27, 1312-1317.	2,4	14
71	The transition of alpha-Ni phase morphology in highly undercooled eutectic Ni 78.6 Si 21.4 alloy. Europhysics Letters, 2006, 74, 281-286.	0.7	13
72	A promising new class of plasticine: Metallic plasticine. Journal of Materials Science and Technology, 2018, 34, 344-348.	5.6	13

#	Article	IF	CITATIONS
73	Microstructure and Mechanical Properties of \$\$hbox {CoCrFeNi}_{2}hbox {Al}_{1{-}{x}hbox {W}_{{x}}\$ CoCrFeNi 2 Al 1 - x. Arabian Journal for Science and Engineering, 2019, 44, 803-808.	1.7	13
74	Grouping strategy <i>via</i> d-orbit energy level to design eutectic high-entropy alloys. Applied Physics Letters, 2021, 119, .	1.5	13
75	Directional solidification of highly undercooled eutectic Ni78.6Si21.4 alloy. Materials Letters, 2005, 59, 1558-1562.	1.3	12
76	Effect of Electromagnetic Field on Microstructure and Properties of Bulk AlCrFeNiMo0.2 High-Entropy Alloy. Journal of Materials Engineering and Performance, 2015, 24, 4475-4481.	1.2	12
77	The formation of quasiregular microstructure in highly undercooled Ni70.2Si29.8 eutectic alloy. Journal of Applied Physics, 2008, 104, 013535.	1.1	11
78	Effect of Ti and Nb Contents on Microstructure and Mechanical Properties of HfZrVTaMoWTi _{<i>x</i>} Nb _{<i>y</i>} Refractory Highâ€Entropy Alloys. Advanced Engineering Materials, 2021, 23, 2100225.	1.6	11
79	Composite growth in highly undercooled Ni70.2Si29.8 eutectic alloy. Applied Physics Letters, 2006, 89, 241902.	1.5	9
80	Effects of deformation and annealing on the microstructures and properties of a nonequiatomic Co29Cr29Fe29Ni12.5W0.5 high-entropy alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 805, 140548.	2.6	9
81	Microstructure evolution and mechanical properties of CrFeNixV0.64Ta0.36 eutectic high-entropy alloys. Materials Characterization, 2021, 181, 111449.	1.9	9
82	Controllable 3D morphology and growth mechanism of quasicrystalline phase in directionally solidified Al–Mn–Be alloy. Journal of Materials Research, 2014, 29, 2547-2555.	1.2	8
83	Microstructure and Mechanical Properties of Al-8 pct Si Alloy Prepared by Direct Chill Casting Under Electromagnetic and Ultrasonic Fields. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 2014-2022.	1.1	8
84	Microstructure and Fabrication of Cu-Pb-Sn/Q235 Laminated Composite by Semi-Solid Rolling. Metals, 2018, 8, 722.	1.0	7
85	Novel Fe2CoNi(AlSi)x high-entropy alloys with attractive soft magnetic and mechanical properties. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	1.1	7
86	Electromagnetic modification of faceted-faceted Ni31Si12-Ni2Si eutectic alloy. Science Bulletin, 2012, 57, 1595-1599.	1.7	5
87	A novel as-cast precipitation-strengthened Al0.5V0.1FeCrMnNi0.9 high-entropy alloy with high strength and plasticity. Science China Technological Sciences, 2021, 64, 1920-1926.	2.0	5
88	Evolution of Microstructure and Mechanical Properties of As-Cast AlxCrFe2Ni2 High-Entropy Alloys with Al Content. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 1850-1860.	1.1	4
89	Criteria for laves-phase formation in refractory high-entropy alloys. Philosophical Magazine Letters, 2022, 102, 161-177.	0.5	4
90	3D Morphology and Formation Process of the Icosahedral Quasicrystalline Phase in Rapidly Solidified Al–Mn Alloy. Acta Metallurgica Sinica (English Letters), 2016, 29, 28-31.	1.5	3

#	Article	IF	CITATIONS
91	Re-rolling technology and alloying-element distribution of carbon fibers reinforced Al-matrix composite. Journal of Materials Processing Technology, 2020, 281, 116617.	3.1	3
92	Entropy as a selection rule for crystal growth in undercooled binary eutectic melts. Science Bulletin, 2009, 54, 1012-1018.	4.3	2
93	Microstructural refinement and performance improvement of Cu–36Âwt% Zn alloy by Al2O3 nanoparticles coupling electromagnetic stirring. Rare Metals, 2022, 41, 3560-3565.	3.6	2
94	Constructing Bi2WO6-decorated TiO2 composite films for photocathodic protection of 304 stainless steel. Journal of Iron and Steel Research International, 2021, 28, 1054-1063.	1.4	2
95	Preface to the special issue on high entropy materials and tungsten-based nuclear materials. Tungsten, 2021, 3, 117-118.	2.0	1
96	Brittle-to-ductile transition in Ti–Pt intermetallic compounds. Science Bulletin, 2021, 66, 2281-2287.	4.3	1
97	A Novel Series of Fe8.25CoCrNiMnNb0.1Mox Multi-Component Alloys with Excellent Combined Strength and Ductility. Journal of Materials Engineering and Performance, 2022, 31, 5374-5381.	1.2	1
98	MICROSTRUCTURAL EVOLUTION OF HIGHLY UNDERCOOLED EUTECTIC Ni78.6Si21.4 ALLOY. Acta Metallurgica Sinica (English Letters), 2006, 19, 43-50.	1.5	0
99	Microstructure evolution and non-equilibrium solidification of undercooled Ni-29.8at% Si eutectic alloy melts. Science China Technological Sciences, 2010, 53, 1043-1048.	2.0	0
100	Microstructures and Mechanical Properties of NixCoCrFeMo0.1 Multi-component Alloys. , 2018, , 293-300.		0
101	Effects of Iron on Microstructure and Properties of CoCrFexNi Multi-principal Element Alloys. , 2018, , 253-258.		0
102	Preface to the Special Issue: High-Entropy Alloys. Acta Metallurgica Sinica (English Letters), 2020, 33, 1031-1032.	1.5	0