
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4386396/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Câ^'H Activation for the Construction of Câ^'B Bonds. Chemical Reviews, 2010, 110, 890-931.	47.7	2,397
2	Evolution of a Fourth Generation Catalyst for the Amination and Thioetherification of Aryl Halides. Accounts of Chemical Research, 2008, 41, 1534-1544.	15.6	1,678
3	On the Interpretation of Deuterium Kinetic Isotope Effects in CH Bond Functionalizations by Transitionâ€Metal Complexes. Angewandte Chemie - International Edition, 2012, 51, 3066-3072.	13.8	1,673
4	Transition Metal Catalyzed Synthesis of Arylamines and Aryl Ethers from Aryl Halides and Triflates: Scope and Mechanism. Angewandte Chemie - International Edition, 1998, 37, 2046-2067.	13.8	1,644
5	Carbonâ	15.6	1,082
6	Mild Iridium-Catalyzed Borylation of Arenes. High Turnover Numbers, Room Temperature Reactions, and Isolation of a Potential Intermediate. Journal of the American Chemical Society, 2002, 124, 390-391.	13.7	1,018
7	Borylation and Silylation of C–H Bonds: A Platform for Diverse C–H Bond Functionalizations. Accounts of Chemical Research, 2012, 45, 864-873.	15.6	917
8	Palladium-Catalyzed α-Arylation of Carbonyl Compounds and Nitriles. Accounts of Chemical Research, 2003, 36, 234-245.	15.6	879
9	Carbon–heteroatom bond formation catalysed by organometallic complexes. Nature, 2008, 455, 314-322.	27.8	866
10	Thermal, Catalytic, Regiospecific Functionalization of Alkanes. Science, 2000, 287, 1995-1997.	12.6	829
11	Palladium-catalyzed synthesis of arylamines from aryl halides. Mechanistic studies lead to coupling in the absence of tin reagents. Tetrahedron Letters, 1995, 36, 3609-3612.	1.4	801
12	Selective, Nickel-Catalyzed Hydrogenolysis of Aryl Ethers. Science, 2011, 332, 439-443.	12.6	743
13	Room-Temperature Palladium-Catalyzed Amination of Aryl Bromides and Chlorides and Extended Scope of Aromatic Câ''N Bond Formation with a Commercial Ligand. Journal of Organic Chemistry, 1999, 64, 5575-5580.	3.2	742
14	Palladium-catalyzed formation of carbon-nitrogen bonds. Reaction intermediates and catalyst improvements in the hetero cross-coupling of aryl halides and tin amides. Journal of the American Chemical Society, 1994, 116, 5969-5970.	13.7	727
15	Air Stable, Sterically Hindered Ferrocenyl Dialkylphosphines for Palladium-Catalyzed Câ^'C, Câ^'N, and Câ^'O Bond-Forming Cross-Couplings. Journal of Organic Chemistry, 2002, 67, 5553-5566.	3.2	708
16	Regioselectivity of the borylation of alkanes and arenes. Chemical Society Reviews, 2011, 40, 1992.	38.1	696
17	Evolution of C–H Bond Functionalization from Methane to Methodology. Journal of the American Chemical Society, 2016, 138, 2-24.	13.7	632
18	A General and Long-Lived Catalyst for the Palladium-Catalyzed Coupling of Aryl Halides with Thiols. Journal of the American Chemical Society, 2006, 128, 2180-2181.	13.7	631

#	Article	IF	CITATIONS
19	Undirected, Homogeneous C–H Bond Functionalization: Challenges and Opportunities. ACS Central Science, 2016, 2, 281-292.	11.3	614
20	Paneth cells as a site of origin for intestinal inflammation. Nature, 2013, 503, 272-276.	27.8	605
21	Mechanistically Driven Development of Iridium Catalysts for Asymmetric Allylic Substitution. Accounts of Chemical Research, 2010, 43, 1461-1475.	15.6	595
22	Catalytic Silylation of Unactivated C–H Bonds. Chemical Reviews, 2015, 115, 8946-8975.	47.7	557
23	Palladium-Catalyzed Direct α-Arylation of Ketones. Rate Acceleration by Sterically Hindered Chelating Ligands and Reductive Elimination from a Transition Metal Enolate Complex. Journal of the American Chemical Society, 1997, 119, 12382-12383.	13.7	548
24	Improved Catalysts for the Palladium-Catalyzed Synthesis of Oxindoles by Amide α-Arylation. Rate Acceleration, Use of Aryl Chloride Substrates, and a New Carbene Ligand for Asymmetric Transformations. Journal of Organic Chemistry, 2001, 66, 3402-3415.	3.2	519
25	Palladium-Catalyzed Amination of Aromatic Câ^'H Bonds with Oxime Esters. Journal of the American Chemical Society, 2010, 132, 3676-3677.	13.7	516
26	A Second-Generation Catalyst for Aryl Halide Amination:Â Mixed Secondary Amines from Aryl Halides and Primary Amines Catalyzed by (DPPF)PdCl2. Journal of the American Chemical Society, 1996, 118, 7217-7218.	13.7	485
27	Mechanism of the Mild Functionalization of Arenes by Diboron Reagents Catalyzed by Iridium Complexes. Intermediacy and Chemistry of Bipyridine-Ligated Iridium Trisboryl Complexes. Journal of the American Chemical Society, 2005, 127, 14263-14278.	13.7	469
28	A Stoichiometric Aromatic CH Borylation Catalyzed by Iridium(<scp>I</scp>)/2,2â€2â€Bipyridine Complexes at Room Temperature. Angewandte Chemie - International Edition, 2002, 41, 3056-3058.	13.8	466
29	Simple, Highly Active Palladium Catalysts for Ketone and Malonate Arylation:Â Dissecting the Importance of Chelation and Steric Hindrance. Journal of the American Chemical Society, 1999, 121, 1473-1478.	13.7	452
30	A Broadly Applicable Copper Reagent for Trifluoromethylations and Perfluoroalkylations of Aryl Iodides and Bromides. Angewandte Chemie - International Edition, 2011, 50, 3793-3798.	13.8	442
31	Palladium-Catalyzed Câ^'O Coupling Involving Unactivated Aryl Halides. Sterically Induced Reductive Elimination To Form the Câ^'O Bond in Diaryl Ethers. Journal of the American Chemical Society, 1999, 121, 3224-3225.	13.7	434
32	Electronic Effects on Reductive Elimination To Form Carbonâ^'Carbon and Carbonâ^'Heteroatom Bonds from Palladium(II) Complexes. Inorganic Chemistry, 2007, 46, 1936-1947.	4.0	418
33	Rhodium-Catalyzed Intermolecular C–H Silylation of Arenes with High Steric Regiocontrol. Science, 2014, 343, 853-857.	12.6	403
34	Oxidative Addition of Ammonia to Form a Stable Monomeric Amido Hydride Complex. Science, 2005, 307, 1080-1082.	12.6	398
35	Distinguishing Between Pathways for Transmetalation in Suzukiâ~'Miyaura Reactions. Journal of the American Chemical Society, 2011, 133, 2116-2119.	13.7	379
36	Unparalleled Rates for the Activation of Aryl Chlorides and Bromides: Coupling with Amines and Boronic Acids in Minutes at Room Temperature. Angewandte Chemie - International Edition, 2002, 41, 4746-4748.	13.8	373

#	Article	IF	CITATIONS
37	Unusual in Situ Ligand Modification to Generate a Catalyst for Room Temperature Aromatic Câ^'O Bond Formation. Journal of the American Chemical Society, 2000, 122, 10718-10719.	13.7	372
38	Metal-catalysed azidation of tertiary C–H bonds suitable for late-stage functionalization. Nature, 2015, 517, 600-604.	27.8	372
39	Hydroamination and Hydroalkoxylation Catalyzed by Triflic Acid. Parallels to Reactions Initiated with Metal Triflates. Organic Letters, 2006, 8, 4179-4182.	4.6	370
40	Catalytic functionalization of unactivated primary C–H bonds directed by an alcohol. Nature, 2012, 483, 70-73.	27.8	366
41	Copper-Mediated Difluoromethylation of Aryl and Vinyl Iodides. Journal of the American Chemical Society, 2012, 134, 5524-5527.	13.7	363
42	Abiological catalysis by artificial haem proteins containing noble metals in place of iron. Nature, 2016, 534, 534-537.	27.8	360
43	Meta Halogenation of 1,3-Disubstituted Arenes via Iridium-Catalyzed Arene Borylation. Journal of the American Chemical Society, 2007, 129, 15434-15435.	13.7	359
44	Discovery and Understanding of Transition-Metal-Catalyzed Aromatic Substitution Reactions. Synlett, 2006, 2006, 1283-1294.	1.8	357
45	Sterically Hindered Chelating Alkyl Phosphines Provide Large Rate Accelerations in Palladium-Catalyzed Amination of Aryl Iodides, Bromides, and Chlorides, and the First Amination of Aryl Tosylates. Journal of the American Chemical Society, 1998, 120, 7369-7370.	13.7	346
46	Palladium-Catalyzed Intermolecular Hydroamination of Vinylarenes Using Arylamines. Journal of the American Chemical Society, 2000, 122, 9546-9547.	13.7	345
47	Regio- and Enantioselective Allylic Amination of Achiral Allylic Esters Catalyzed by an Iridiumâ°'Phosphoramidite Complex. Journal of the American Chemical Society, 2002, 124, 15164-15165.	13.7	345
48	Highly Reactive, General and Long-Lived Catalysts for Palladium-Catalyzed Amination of Heteroaryl and Aryl Chlorides, Bromides, and Iodides: Scope and Structure–Activity Relationships. Journal of the American Chemical Society, 2008, 130, 6586-6596.	13.7	337
49	High Turnover Number and Rapid, Room-Temperature Amination of Chloroarenes Using Saturated Carbene Ligands. Organic Letters, 2000, 2, 1423-1426.	4.6	335
50	Palladium-CatalyzedÂCouplingÂofÂAmmoniaÂandÂLithiumÂAmideÂwithÂArylÂHalides. Journal of the American Chemical Society, 2006, 128, 10028-10029.	13.7	335
51	Palladium-Catalyzed Câ~'N(sp2) Bond Formation:ÂN-Arylation of Aromatic and Unsaturated Nitrogen and the Reductive Elimination Chemistry of Palladium Azolyl and Methyleneamido Complexes. Journal of the American Chemical Society, 1998, 120, 827-828.	13.7	332
52	Palladium-Catalyzed Hydroamination of 1,3-Dienes:  A Colorimetric Assay and Enantioselective Additions. Journal of the American Chemical Society, 2001, 123, 4366-4367.	13.7	331
53	Iridium-catalyzed C–H coupling reaction of heteroaromatic compounds with bis(pinacolato)diboron: regioselective synthesis of heteroarylboronates. Tetrahedron Letters, 2002, 43, 5649-5651.	1.4	326
54	Highly Reactive, General, and Long-Lived Catalysts for Coupling Heteroaryl and Aryl Chlorides with Primary Nitrogen Nucleophiles. Angewandte Chemie - International Edition, 2005, 44, 1371-1375.	13.8	326

#	Article	IF	CITATIONS
55	Silyl-Directed, Iridium-Catalyzed <i>ortho</i> -Borylation of Arenes. A One-Pot <i>ortho</i> -Borylation of Phenols, Arylamines, and Alkylarenes. Journal of the American Chemical Society, 2008, 130, 7534-7535.	13.7	323
56	Catalytic Organometallic Reactions of Ammonia. Angewandte Chemie - International Edition, 2011, 50, 86-95.	13.8	319
57	Rhodium Boryl Complexes in the Catalytic, Terminal Functionalization of Alkanes. Journal of the American Chemical Society, 2005, 127, 2538-2552.	13.7	317
58	lridium-Catalyzed C–H Borylation of Heteroarenes: Scope, Regioselectivity, Application to Late-Stage Functionalization, and Mechanism. Journal of the American Chemical Society, 2014, 136, 4287-4299.	13.7	317
59	Palladium Alkoxides:Â Potential Intermediacy in Catalytic Amination, Reductive Elimination of Ethers, and Catalytic Etheration. Comments on Alcohol Elimination from Ir(III). Journal of the American Chemical Society, 1996, 118, 13109-13110.	13.7	309
60	Scope and Mechanism of Palladium-Catalyzed Amination of Five-Membered Heterocyclic Halides. Journal of Organic Chemistry, 2003, 68, 2861-2873.	3.2	309
61	Iridium-Catalyzed, Silyl-Directed Borylation of Nitrogen-Containing Heterocycles. Journal of the American Chemical Society, 2010, 132, 4068-4069.	13.7	305
62	An artificial metalloenzyme with the kinetics of native enzymes. Science, 2016, 354, 102-106.	12.6	296
63	Copper Complexes of Anionic Nitrogen Ligands in the Amidation and Imidation of Aryl Halides. Journal of the American Chemical Society, 2008, 130, 9971-9983.	13.7	294
64	A Heterogeneous Nickel Catalyst for the Hydrogenolysis of Aryl Ethers without Arene Hydrogenation. Journal of the American Chemical Society, 2012, 134, 20226-20229.	13.7	293
65	A Highly Active Palladium Catalyst for Intermolecular Hydroamination. Factors that Control Reactivity and Additions of Functionalized Anilines to Dienes and Vinylarenes. Journal of the American Chemical Society, 2006, 128, 1828-1839.	13.7	290
66	Catalytic, Regiospecific End-Functionalization of Alkanes: Rhenium-Catalyzed Borylation under Photochemical Conditions. Angewandte Chemie - International Edition, 1999, 38, 3391-3393.	13.8	289
67	A Fluorescence-Based Assay for High-Throughput Screening of Coupling Reactions. Application to Heck Chemistry. Journal of the American Chemical Society, 1999, 121, 2123-2132.	13.7	288
68	Synthesis, Structure, Theoretical Studies, and Ligand Exchange Reactions of Monomeric, T-Shaped Arylpalladium(II) Halide Complexes with an Additional, Weak Agostic Interaction. Journal of the American Chemical Society, 2004, 126, 1184-1194.	13.7	288
69	Selective Functionalization of Alkanes by Transition-Metal Boryl Complexes. Science, 1997, 277, 211-213.	12.6	284
70	Carbonâ^'Sulfur Bond-Forming Reductive Elimination Involving sp-, sp2-, and sp3-Hybridized Carbon. Mechanism, Steric Effects, and Electronic Effects on Sulfide Formation. Journal of the American Chemical Society, 1998, 120, 9205-9219.	13.7	280
71	Palladium-Catalyzed Amination of Aryl Halides: Mechanism and Rational Catalyst Design. Synlett, 1997, 1997, 329-340.	1.8	279
72	Identification of an Activated Catalyst in the Iridium-Catalyzed Allylic Amination and Etherification. Increased Rates, Scope, and Selectivity. Journal of the American Chemical Society, 2003, 125, 14272-14273.	13.7	277

#	Article	IF	CITATIONS
73	Carbonâ^'Nitrogen-Bond-Forming Reductive Elimination of Arylamines from Palladium(II) Phosphine Complexes. Journal of the American Chemical Society, 1997, 119, 8232-8245.	13.7	275
74	Palladium-Catalyzed Coupling of Ammonia with Aryl Chlorides, Bromides, Iodides, and Sulfonates: A General Method for the Preparation of Primary Arylamines. Journal of the American Chemical Society, 2009, 131, 11049-11061.	13.7	275
75	Palladium-Catalyzed Inter- and Intramolecular α-Arylation of Amides. Application of Intramolecular Amide Arylation to the Synthesis of Oxindoles. Journal of Organic Chemistry, 1998, 63, 6546-6553.	3.2	274
76	Transitionâ€Metalâ€Catalyzed Selective Functionalization of C(sp ³)â^'H Bonds in Natural Products. Angewandte Chemie - International Edition, 2018, 57, 4234-4241.	13.8	271
77	Reevaluation of the Mechanism of the Amination of Aryl Halides Catalyzed by BINAP-Ligated Palladium Complexes. Journal of the American Chemical Society, 2006, 128, 3584-3591.	13.7	264
78	Highly Efficient and Functional-Group-Tolerant Catalysts for the Palladium-Catalyzed Coupling of Aryl Chlorides with Thiols. Chemistry - A European Journal, 2006, 12, 7782-7796.	3.3	264
79	Linear-Selective Hydroarylation of Unactivated Terminal and Internal Olefins with Trifluoromethyl-Substituted Arenes. Journal of the American Chemical Society, 2014, 136, 13098-13101.	13.7	263
80	Structural Characterization and Simple Synthesis of {Pd[P(o-Tol)3]2}. Spectroscopic Study and Structural Characterization of the Dimeric Palladium(II) Complexes Obtained by Oxidative Addition of Aryl Bromides and Their Reactivity with Amines. Organometallics, 1995, 14, 3030-3039.	2.3	261
81	Carbonâ^'Carbon Bond-Forming Reductive Elimination from Arylpalladium Complexes Containing Functionalized Alkyl Groups. Influence of Ligand Steric and Electronic Properties on Structure, Stability, and Reactivity. Organometallics, 2004, 23, 3398-3416.	2.3	260
82	Synthesis, Characterization, and Reactivity of Monomeric, Arylpalladium Halide Complexes with a Hindered Phosphine as the Only Dative Ligand. Journal of the American Chemical Society, 2002, 124, 9346-9347.	13.7	256
83	Stereodivergent Allylic Substitutions with Aryl Acetic Acid Esters by Synergistic Iridium and Lewis Base Catalysis. Journal of the American Chemical Society, 2017, 139, 87-90.	13.7	250
84	BrÃ,nsted Acid-Catalyzed Intramolecular Hydroamination of Protected Alkenylamines. Synthesis of Pyrrolidines and Piperidines. Organic Letters, 2002, 4, 1471-1474.	4.6	243
85	Rhodium-Catalyzed Anti-Markovnikov Hydroamination of Vinylarenes. Journal of the American Chemical Society, 2003, 125, 5608-5609.	13.7	241
86	A General Strategy for the Perfluoroalkylation of Arenes and Arylbromides by Using Arylboronate Esters and [(phen)CuR ^F]. Angewandte Chemie - International Edition, 2012, 51, 536-539.	13.8	239
87	Palladium-Catalyzed Arylation of Malonates and Cyanoesters Using Sterically Hindered Trialkyl- and Ferrocenyldialkylphosphine Ligands. Journal of Organic Chemistry, 2002, 67, 541-555.	3.2	234
88	Efficient Synthesis of α-Aryl Esters by Room-Temperature Palladium-Catalyzed Coupling of Aryl Halides with Ester Enolates. Journal of the American Chemical Society, 2002, 124, 12557-12565.	13.7	233
89	Palladium-Catalyzed α-Arylation of Esters and Amides under More Neutral Conditions. Journal of the American Chemical Society, 2003, 125, 11176-11177.	13.7	232
90	From Bis(silylene) and Bis(germylene) Pincer-Type Nickel(II) Complexes to Isolable Intermediates of the Nickel-Catalyzed Sonogashira Cross-Coupling Reaction. Journal of the American Chemical Society, 2013, 135, 15617-15626.	13.7	232

#	Article	lF	CITATIONS
91	Palladium-Catalyzed α-Arylation of Esters and Protected Amino Acids. Journal of the American Chemical Society, 2001, 123, 8410-8411.	13.7	230
92	Cooperative asymmetric reactions combining photocatalysis and enzymatic catalysis. Nature, 2018, 560, 355-359.	27.8	230
93	Effect of Ligand Steric Properties and Halide Identity on the Mechanism for Oxidative Addition of Haloarenes to Trialkylphosphine Pd(0) Complexes. Journal of the American Chemical Society, 2009, 131, 8141-8154.	13.7	229
94	A Simple, Multidimensional Approach to High-Throughput Discovery of Catalytic Reactions. Science, 2011, 333, 1423-1427.	12.6	229
95	Room temperature borylation of arenes and heteroarenes using stoichiometric amounts of pinacolborane catalyzed by iridium complexes in an inert solventElectronic supplementary information (ESI) available: experimental procedures and spectral analyses of products. See http://www.rsc.org/suppdata/cc/b3/b311103b/. Chemical Communications. 2003 2924.	4.1	227
96	Enantioselective α-Arylation of Ketones with Aryl Triflates Catalyzed by Difluorphos Complexes of Palladium and Nickel. Journal of the American Chemical Society, 2008, 130, 195-200.	13.7	225
97	Iridium-Catalyzed Arene <i>Ortho</i> -Silylation by Formal Hydroxyl-Directed Câ^'H Activation. Journal of the American Chemical Society, 2010, 132, 17092-17095.	13.7	225
98	Copper-Catalyzed Intermolecular Amidation and Imidation of Unactivated Alkanes. Journal of the American Chemical Society, 2014, 136, 2555-2563.	13.7	223
99	Oxidative Addition of Aryl Bromide after Dissociation of Phosphine from a Two-Coordinate Palladium(0) Complex, Bis(tri-o-tolylphosphine)Palladium(0). Journal of the American Chemical Society, 1995, 117, 5373-5374.	13.7	220
100	Palladium-Catalyzed Amination of Aryl Triflates and Importance of Triflate Addition Rate. Journal of Organic Chemistry, 1997, 62, 1268-1273.	3.2	220
101	Screening of Homogeneous Catalysts by Fluorescence Resonance Energy Transfer. Identification of Catalysts for Room-Temperature Heck Reactions. Journal of the American Chemical Society, 2001, 123, 2677-2678.	13.7	220
102	A General Nickel-Catalyzed Hydroamination of 1,3-Dienes by Alkylamines:Â Catalyst Selection, Scope, and Mechanism. Journal of the American Chemical Society, 2002, 124, 3669-3679.	13.7	220
103	Selective C-H Fluorination of Pyridines and Diazines Inspired by a Classic Amination Reaction. Science, 2013, 342, 956-960.	12.6	220
104	Palladium-Catalyzed Synthesis of Arylamines from Aryl Halides and Lithium Bis(trimethylsilyl)amide as an Ammonia Equivalent. Organic Letters, 2001, 3, 2729-2732.	4.6	216
105	Oxidative Addition of Aryl Tosylates to Palladium(0) and Coupling of Unactivated Aryl Tosylates at Room Temperature. Journal of the American Chemical Society, 2003, 125, 8704-8705.	13.7	215
106	Cyanation of Arenes via Iridium-Catalyzed Borylation. Journal of the American Chemical Society, 2010, 132, 11389-11391.	13.7	213
107	Regio- and Enantioselective Iridium-Catalyzed Intermolecular Allylic Etherification of Achiral Allylic Carbonates with Phenoxides. Journal of the American Chemical Society, 2003, 125, 3426-3427.	13.7	211
108	Mechanistic Studies of the Palladium-Catalyzed Amination of Aryl Halides and the Oxidative Addition of Aryl Bromides to Pd(BINAP)2and Pd(DPPF)2:Â An Unusual Case of Zero-Order Kinetic Behavior and Product Inhibition. Journal of the American Chemical Society, 2000, 122, 4618-4630.	13.7	210

#	Article	IF	CITATIONS
109	Resting State and Elementary Steps of the Coupling of Aryl Halides with Thiols Catalyzed by Alkylbisphosphine Complexes of Palladium. Journal of the American Chemical Society, 2009, 131, 7858-7868.	13.7	209
110	Iridium-Catalyzed Allylic Substitution. Topics in Organometallic Chemistry, 2011, , 169-208.	0.7	209
111	Copper-Mediated Fluorination of Aryl Iodides. Journal of the American Chemical Society, 2012, 134, 10795-10798.	13.7	208
112	Multistep One-Pot Reactions Combining Biocatalysts and Chemical Catalysts for Asymmetric Synthesis. ACS Catalysis, 2013, 3, 2856-2864.	11.2	207
113	Controlling First-Row Catalysts: Amination of Aryl and Heteroaryl Chlorides and Bromides with Primary Aliphatic Amines Catalyzed by a BINAP-Ligated Single-Component Ni(0) Complex. Journal of the American Chemical Society, 2014, 136, 1617-1627.	13.7	207
114	Influences on the Relative Rates for Câ^'N Bond-Forming Reductive Elimination and β-Hydrogen Elimination of Amides. A Case Study on the Origins of Competing Reduction in the Palladium-Catalyzed Amination of Aryl Halides. Journal of the American Chemical Society, 1996, 118, 3626-3633.	13.7	205
115	Distinct Mechanisms for the Oxidative Addition of Chloro-, Bromo-, and Iodoarenes to a Bisphosphine Palladium(0) Complex with Hindered Ligands. Journal of the American Chemical Society, 2005, 127, 6944-6945.	13.7	200
116	Iridium-Catalyzed Silylation of Aryl C–H Bonds. Journal of the American Chemical Society, 2015, 137, 592-595.	13.7	200
117	Reductive Elimination of Aryl Halides from Palladium(II). Journal of the American Chemical Society, 2001, 123, 1232-1233.	13.7	199
118	Ruthenium-Catalyzed Anti-Markovnikov Hydroamination of Vinylarenes. Journal of the American Chemical Society, 2004, 126, 2702-2703.	13.7	199
119	Palladium-Catalyzed Amination of Aryl Halides and Related Reactions. , 0, , 1051-1096.		198
120	Copper-Mediated Fluorination of Arylboronate Esters. Identification of a Copper(III) Fluoride Complex. Journal of the American Chemical Society, 2013, 135, 2552-2559.	13.7	197
121	Pd-Catalyzed α-Arylation of α,α-Difluoroketones with Aryl Bromides and Chlorides. A Route to Difluoromethylarenes. Journal of the American Chemical Society, 2014, 136, 4149-4152.	13.7	195
122	Stereodivergent Allylation of Azaaryl Acetamides and Acetates by Synergistic Iridium and Copper Catalysis. Journal of the American Chemical Society, 2018, 140, 1239-1242.	13.7	195
123	Hydrocarbon Functionalization by Transition Metal Boryls. Journal of the American Chemical Society, 1995, 117, 11357-11358.	13.7	194
124	Pushing the Ïfâ€Donor Strength in Iridium Pincer Complexes: Bis(silylene) and Bis(germylene) Ligands Are Stronger Donors than Bis(phosphorus(III)) Ligands. Angewandte Chemie - International Edition, 2012, 51, 11478-11482.	13.8	194
125	True Metal-Catalyzed Hydroboration with Titanium. Journal of the American Chemical Society, 1996, 118, 1696-1702.	13.7	193
126	Ruthenium-Catalyzed Regiospecific Borylation of Methyl Câ^'H Bonds. Journal of the American Chemical Society, 2006, 128, 13684-13685.	13.7	192

#	Article	IF	CITATIONS
127	Iridium-Catalyzed Intermolecular Asymmetric Hydroheteroarylation of Bicycloalkenes. Journal of the American Chemical Society, 2013, 135, 2116-2119.	13.7	192
128	Discrete High Molecular Weight Triarylamine Dendrimers Prepared by Palladium-Catalyzed Amination. Journal of the American Chemical Society, 1997, 119, 11695-11696.	13.7	191
129	Kumada Coupling of Aryl and Vinyl Tosylates under Mild Conditions. Journal of Organic Chemistry, 2005, 70, 9364-9370.	3.2	189
130	Directly Observed Reductive Elimination of Aryl Halides from Monomeric Arylpalladium(II) Halide Complexes. Journal of the American Chemical Society, 2003, 125, 13944-13945.	13.7	188
131	Palladium-Catalyzed Intermolecular α-Arylation of Zinc Amide Enolates under Mild Conditions. Journal of the American Chemical Society, 2006, 128, 4976-4985.	13.7	188
132	Transition Metal-Catalyzed Addition of Amines to Acrylic Acid Derivatives. A High-Throughput Method for Evaluating Hydroamination of Primary and Secondary Alkylamines. Organometallics, 2001, 20, 1960-1964.	2.3	187
133	Electronic and Steric Effects on the Reductive Elimination of Diaryl Ethers from Palladium(II). Organometallics, 2003, 22, 2775-2789.	2.3	186
134	Direct, Catalytic Hydroaminoalkylation of Unactivated Olefins withN-Alkyl Arylamines. Journal of the American Chemical Society, 2007, 129, 6690-6691.	13.7	186
135	A New Pathway for Hydroamination. Mechanism of Palladium-Catalyzed Addition of Anilines to Vinylarenes. Journal of the American Chemical Society, 2002, 124, 1166-1167.	13.7	185
136	Intermolecular, Catalytic Asymmetric Hydroamination of Bicyclic Alkenes and Dienes in High Yield and Enantioselectivity. Journal of the American Chemical Society, 2008, 130, 12220-12221.	13.7	183
137	Systematic Variation of Bidentate Ligands Used in Aryl Halide Amination. Unexpected Effects of Steric, Electronic, and Geometric Perturbations. Journal of the American Chemical Society, 1998, 120, 3694-3703.	13.7	181
138	Enantioselective Allylation of Aromatic Amines after In Situ Generation of an Activated Cyclometalated Iridium Catalyst. Angewandte Chemie - International Edition, 2004, 43, 4797-4800.	13.8	180
139	Intermolecular and Intramolecular, Platinum-Catalyzed, Acceptorless Dehydrogenative Coupling of Hydrosilanes with Aryl and Aliphatic Methyl Câ^'H Bonds. Journal of the American Chemical Society, 2005, 127, 5022-5023.	13.7	180
140	Rhodium-Catalyzed Intramolecular, Anti-Markovnikov Hydroamination. Synthesis of 3-Arylpiperidines. Journal of the American Chemical Society, 2006, 128, 6042-6043.	13.7	180
141	Control of Diastereoselectivity for Iridium-Catalyzed Allylation of a Prochiral Nucleophile with a Phosphate Counterion. Journal of the American Chemical Society, 2013, 135, 2068-2071.	13.7	178
142	Experimental and Computational Evidence for a Boron-Assisted, Ïf-Bond Metathesis Pathway for Alkane Borylation. Journal of the American Chemical Society, 2003, 125, 858-859.	13.7	177
143	Mild, Rhodium-Catalyzed Intramolecular Hydroamination of Unactivated Terminal and Internal Alkenes with Primary and Secondary Amines. Journal of the American Chemical Society, 2008, 130, 1570-1571.	13.7	177
144	Iridium-Catalyzed, Asymmetric Amination of Allylic Alcohols Activated by Lewis Acids. Journal of the American Chemical Society, 2007, 129, 7508-7509.	13.7	175

#	Article	IF	CITATIONS
145	Nickel-Catalyzed Asymmetric α-Arylation and Heteroarylation of Ketones with Chloroarenes: Effect of Halide on Selectivity, Oxidation State, and Room-Temperature Reactions. Journal of the American Chemical Society, 2011, 133, 16330-16333.	13.7	173
146	Sterically Controlled, Palladium-Catalyzed Intermolecular Amination of Arenes. Journal of the American Chemical Society, 2013, 135, 8480-8483.	13.7	167
147	Catalyst-Controlled Site-Selective Bond Activation. Accounts of Chemical Research, 2017, 50, 549-555.	15.6	167
148	A Simple Iridium Catalyst with a Single Resolved Stereocenter for Enantioselective Allylic Amination. Catalyst Selection from Mechanistic Analysis. Journal of the American Chemical Society, 2005, 127, 15506-15514.	13.7	166
149	Carbon-Heteroatom Bond-Forming Reductive Elimination. Mechanism, Importance of Trapping Reagents, and Unusual Electronic Effects during Formation of Aryl Sulfides. Journal of the American Chemical Society, 1995, 117, 2937-2938.	13.7	165
150	Palladium-Catalyzed Synthesis of Pure, Regiodefined Polymeric Triarylamines. Journal of the American Chemical Society, 1999, 121, 7527-7539.	13.7	165
151	Transmetalation, Involving Organotin Aryl, Thiolate, and Amide Compounds. An Unusual Type of Dissociative Ligand Substitution Reaction. Journal of the American Chemical Society, 1995, 117, 11598-11599.	13.7	164
152	A Route to Pdo from PdII Metallacycles in Animation and Cross-Coupling Chemistry. Angewandte Chemie International Edition in English, 1996, 35, 2359-2361.	4.4	164
153	Synthesis, Characterization, and Reactivity of Arylpalladium Cyanoalkyl Complexes:Â Selection of Catalysts for the α-Arylation of Nitriles. Journal of the American Chemical Society, 2002, 124, 9330-9331.	13.7	164
154	Intermolecular, Markovnikov Hydroamination of Vinylarenes with Alkylamines. Journal of the American Chemical Society, 2003, 125, 14286-14287.	13.7	164
155	Palladium-Catalyzed Amination of Aryl and Heteroaryl Tosylates at Room Temperature. Journal of the American Chemical Society, 2008, 130, 13848-13849.	13.7	164
156	Iridium-Catalyzed Regio- and Enantioselective Allylation of Ketone Enolates. Journal of the American Chemical Society, 2005, 127, 17192-17193.	13.7	162
157	Mild Palladium-Catalyzed Selective Monoarylation of Nitriles. Journal of the American Chemical Society, 2005, 127, 15824-15832.	13.7	162
158	Lewis Acid Acceleration of Câ^'N Bond-Forming Reductive Elimination from Heteroarylpalladium Complexes and Catalytic Amidation of Heteroaryl Bromides. Journal of the American Chemical Society, 2007, 129, 7734-7735.	13.7	162
159	A General, Efficient, and Functional-Group-Tolerant Catalyst System for the Palladium-Catalyzed Thioetherification of Aryl Bromides and Iodides. Journal of Organic Chemistry, 2009, 74, 1663-1672.	3.2	162
160	Synthesis, Structure, and Reactivity of a Palladium Hydrazonato Complex: A New Type of Reductive Elimination Reaction To Form Câ`'N Bonds and Catalytic Arylation of Benzophenone Hydrazone. Angewandte Chemie - International Edition, 1998, 37, 2090-2093.	13.8	158
161	Cu(I)â^'Amido Complexes in the Ullmann Reaction: Reactions of Cu(I)â^'Amido Complexes with Iodoarenes with and without Autocatalysis by CuI. Journal of the American Chemical Society, 2010, 132, 15860-15863.	13.7	157
162	Palladium-Catalyzed Arylation of Trimethylsilyl Enolates of Esters and Imides. High Functional Group Tolerance and Stereoselective Synthesis of α-Aryl Carboxylic Acid Derivatives. Journal of the American Chemical Society, 2004, 126, 5182-5191.	13.7	156

#	Article	IF	CITATIONS
163	Stereodivergent Construction of Tertiary Fluorides in Vicinal Stereogenic Pairs by Allylic Substitution with Iridium and Copper Catalysts. Journal of the American Chemical Society, 2019, 141, 13066-13073.	13.7	155
164	Functionalization of Alkanes by Isolated Transition Metal Boryl Complexes. Journal of the American Chemical Society, 2000, 122, 11358-11369.	13.7	154
165	Regioselective and Enantioselective Iridium-Catalyzed Allylation of Enamines. Journal of the American Chemical Society, 2007, 129, 7720-7721.	13.7	153
166	Iridium-Catalyzed Borylation of Secondary C–H Bonds in Cyclic Ethers. Journal of the American Chemical Society, 2012, 134, 12422-12425.	13.7	152
167	Catecholborane Bound to Titanocene. Unusual Coordination of Ligand σ-Bonds. Journal of the American Chemical Society, 1996, 118, 10936-10937.	13.7	151
168	Arenes to Anilines and Aryl Ethers by Sequential Iridium-Catalyzed Borylation and Copper-Catalyzed Coupling. Organic Letters, 2007, 9, 761-764.	4.6	151
169	Zinc Trimethylsilylamide as a Mild Ammonia Equivalent and Base for the Amination of Aryl Halides and Triflates. Organic Letters, 2005, 7, 1169-1172.	4.6	150
170	A Continuum Resulting from Equilibrium between Two Structural Extremes in Tungstenocene and Niobocene Boryl and Hydridoborate ComplexespiBonding in a d2 Boryl System and the First d0 Boryl Complex. Journal of the American Chemical Society, 1994, 116, 3661-3662.	13.7	149
171	Câ^'C Bond-Forming Reductive Elimination of Ketones, Esters, and Amides from Isolated Arylpalladium(II) Enolates. Journal of the American Chemical Society, 2001, 123, 5816-5817.	13.7	149
172	Câ^'H Activation and Functionalization of Unsaturated Hydrocarbons by Transition-Metal Boryl Complexes. Organometallics, 1999, 18, 3383-3393.	2.3	148
173	Cation Control of Diastereoselectivity in Iridium-Catalyzed Allylic Substitutions. Formation of Enantioenriched Tertiary Alcohols and Thioethers by Allylation of <i>5H</i> -Oxazol-4-ones and <i>5H</i> -Thiazol-4-ones. Journal of the American Chemical Society, 2014, 136, 377-382.	13.7	148
174	Aqueous Hydroxide as a Base for Palladium-Catalyzed Amination of Aryl Chlorides and Bromides. Journal of Organic Chemistry, 2002, 67, 6479-6486.	3.2	147
175	Acceptorless, Neat, Ruthenium-Catalyzed Dehydrogenative Cyclization of Diols to Lactones. Organometallics, 2005, 24, 2441-2446.	2.3	147
176	Chemoselective, Enzymatic C–H Bond Amination Catalyzed by a Cytochrome P450 Containing an Ir(Me)-PIX Cofactor. Journal of the American Chemical Society, 2017, 139, 1750-1753.	13.7	147
177	Synthesis, Structure, and Reductive Elimination Chemistry of Three-Coordinate Arylpalladium Amido Complexes. Journal of the American Chemical Society, 2004, 126, 5344-5345.	13.7	144
178	Titanocene Borane Ï f -Complexes. Journal of the American Chemical Society, 1999, 121, 5033-5046.	13.7	143
179	Iridium-Catalyzed, Regio- and Enantioselective Allylic Substitution with Aromatic and Aliphatic Sulfinates. Organic Letters, 2010, 12, 92-94.	4.6	143
180	Hydroaminoalkylation of Unactivated Olefins with Dialkylamines. Journal of the American Chemical Society, 2008, 130, 14940-14941.	13.7	141

#	Article	IF	CITATIONS
181	Diverse Asymmetric Hydrofunctionalization of Aliphatic Internal Alkenes through Catalytic Regioselective Hydroboration. Journal of the American Chemical Society, 2016, 138, 6703-6706.	13.7	141
182	Synthesis of Difluoromethyl Ethers with Difluoromethyltriflate. Angewandte Chemie - International Edition, 2013, 52, 2092-2095.	13.8	139
183	A Rare, Low-Valent Alkylamido Complex, a Diphenylamido Complex, and Their Reductive Elimination of Amines by Three-Coordinate Intermediates. Journal of the American Chemical Society, 1995, 117, 4708-4709.	13.7	138
184	Nickelâ€Catalyzed Amination of Aryl Chlorides with Ammonia or Ammonium Salts. Angewandte Chemie - International Edition, 2015, 54, 3768-3772.	13.8	138
185	Regio- and Enantioselective <i>N</i> -Allylations of Imidazole, Benzimidazole, and Purine Heterocycles Catalyzed by Single-Component Metallacyclic Iridium Complexes. Journal of the American Chemical Society, 2009, 131, 8971-8983.	13.7	137
186	Iridium-Catalyzed C–H Borylation of Cyclopropanes. Journal of the American Chemical Society, 2013, 135, 3375-3378.	13.7	137
187	Rhodium-Catalyzed, Regiospecific Functionalization of Polyolefins in the Melt. Journal of the American Chemical Society, 2002, 124, 1164-1165.	13.7	135
188	One-Pot Synthesis of Arylboronic Acids and Aryl Trifluoroborates by Ir-Catalyzed Borylation of Arenes. Organic Letters, 2007, 9, 757-760.	4.6	135
189	Anti-Markovnikov Hydroheteroarylation of Unactivated Alkenes with Indoles, Pyrroles, Benzofurans, and Furans Catalyzed by a Nickel– <i>N</i> -Heterocyclic Carbene System. Journal of the American Chemical Society, 2015, 137, 12215-12218.	13.7	135
190	Iridium-Catalyzed Intermolecular Hydroamination of Unactivated Aliphatic Alkenes with Amides and Sulfonamides. Journal of the American Chemical Society, 2012, 134, 11960-11963.	13.7	134
191	Iridium-Catalyzed, Intermolecular Hydroamination of Unactivated Alkenes with Indoles. Journal of the American Chemical Society, 2014, 136, 3200-3207.	13.7	133
192	Transition metal boryl complexes: structure and reactivity of CpFe(CO)2Bcat and CpFe(CO)2BPh2. Journal of the American Chemical Society, 1993, 115, 4908-4909.	13.7	132
193	Cooperative Tandem Catalysis by an Organometallic Complex and a Metalloenzyme. Angewandte Chemie - International Edition, 2014, 53, 465-469.	13.8	132
194	Iridium-Catalyzed Borylation of Primary Benzylic C–H Bonds without a Directing Group: Scope, Mechanism, and Origins of Selectivity. Journal of the American Chemical Society, 2015, 137, 8633-8643.	13.7	131
195	Diverse functionalization of strong alkyl C–H bonds by undirected borylation. Science, 2020, 368, 736-741.	12.6	131
196	Palladium-Catalyzed Formation of Diaryl Ethers from Aryl Bromides. Electron Poor Phosphines enhance Reaction Yields. Tetrahedron Letters, 1997, 38, 8005-8008.	1.4	130
197	Ïf-Borane Complexes of Manganese and Rhenium. Journal of the American Chemical Society, 2000, 122, 9435-9443.	13.7	130
198	Copper(I) Phenoxide Complexes in the Etherification of Aryl Halides. Angewandte Chemie - International Edition, 2010, 49, 2185-2189.	13.8	129

#	Article	IF	CITATIONS
199	Mechanistic Studies on Direct Arylation of Pyridine <i>N</i> -Oxide: Evidence for Cooperative Catalysis between Two Distinct Palladium Centers. Journal of the American Chemical Society, 2012, 134, 3683-3686.	13.7	129
200	Chemo―and Regioselective Hydrogenolysis of Diaryl Ether Câ^'O Bonds by a Robust Heterogeneous Ni/C Catalyst: Applications to the Cleavage of Complex Ligninâ€Related Fragments. Angewandte Chemie - International Edition, 2016, 55, 1474-1478.	13.8	129
201	Nickel-catalysed anti-Markovnikov hydroarylation of unactivated alkenes with unactivated arenes facilitated by non-covalent interactions. Nature Chemistry, 2020, 12, 276-283.	13.6	129
202	[(CyPF- ^{<i>t</i>} Bu)PdCl ₂]: An Air-Stable, One-Component, Highly Efficient Catalyst for Amination of Heteroaryl and Aryl Halides. Organic Letters, 2008, 10, 4109-4112.	4.6	128
203	Accurate Borane Sequential Bond Dissociation Energies by High-Level ab Initio Computational Methods. Journal of the American Chemical Society, 1996, 118, 4648-4653.	13.7	127
204	Assessment of the Intermediacy of Arylpalladium Carboxylate Complexes in the Direct Arylation of Benzene: Evidence for Câ^'H Bond Cleavage by "Ligandless―Species. Journal of the American Chemical Society, 2011, 133, 3308-3311.	13.7	127
205	Mechanism of Aryl Chloride Amination:Â Base-Induced Oxidative Addition. Journal of the American Chemical Society, 2001, 123, 12905-12906.	13.7	126
206	Distinct Thermodynamics for the Formation and Cleavage of Nâ^'H Bonds in Aniline and Ammonia. Directly-Observed Reductive Elimination of Ammonia from an Isolated Amido Hydride Complex. Journal of the American Chemical Society, 2003, 125, 13644-13645.	13.7	126
207	Regiospecific Functionalization of Methyl Câ^'H Bonds of Alkyl Groups in Reagents with Heteroatom Functionality. Journal of the American Chemical Society, 2004, 126, 15334-15335.	13.7	126
208	Mechanistic Studies of Ruthenium-Catalyzed Anti-Markovnikov Hydroamination of Vinylarenes: Intermediates and Evidence for Catalysis through π-Arene Complexes. Journal of the American Chemical Society, 2005, 127, 5756-5757.	13.7	126
209	The Allyl Intermediate in Regioselective and Enantioselective Iridium-Catalyzed Asymmetric Allylic Substitution Reactions. Journal of the American Chemical Society, 2009, 131, 7228-7229.	13.7	126
210	Synthesis and Late-Stage Functionalization of Complex Molecules through C–H Fluorination and Nucleophilic Aromatic Substitution. Journal of the American Chemical Society, 2014, 136, 10139-10147.	13.7	126
211	Regioselective Borylation of the C–H Bonds in Alkylamines and Alkyl Ethers. Observation and Origin of High Reactivity of Primary C–H Bonds Beta to Nitrogen and Oxygen. Journal of the American Chemical Society, 2014, 136, 8755-8765.	13.7	126
212	Palladium-Catalyzed, Site-Selective Direct Allylation of Aryl C–H Bonds by Silver-Mediated C–H Activation: A Synthetic and Mechanistic Investigation. Journal of the American Chemical Society, 2016, 138, 15278-15284.	13.7	126
213	Palladium-Catalyzed Synthesis of Aryl Ketones by Coupling of Aryl Bromides with an Acyl Anion Equivalent. Journal of the American Chemical Society, 2006, 128, 14800-14801.	13.7	125
214	Ligandless, Anionic, Arylpalladium Halide Intermediates in the Heck Reaction. Journal of the American Chemical Society, 2010, 132, 79-81.	13.7	125
215	Iridium-Catalyzed Regioselective Silylation of Secondary Alkyl C–H Bonds for the Synthesis of 1,3-Diols. Journal of the American Chemical Society, 2014, 136, 6586-6589.	13.7	125
216	Catalytic Hydroxylation of Polypropylenes. Journal of the American Chemical Society, 2005, 127, 767-776.	13.7	124

#	Article	IF	CITATIONS
217	Effects of Catalyst Activation and Ligand Steric Properties on the Enantioselective Allylation of Amines and Phenoxides. Organic Letters, 2005, 7, 1093-1096.	4.6	122
218	Palladiumâ€Catalyzed αâ€Arylation of Aldehydes with Bromo―and Chloroarenes Catalyzed by [{Pd(allyl)Cl} ₂] and dppf or Qâ€phos. Angewandte Chemie - International Edition, 2008, 47, 2127-2130.	13.8	122
219	Iridium-catalyzed diborylation of benzylic C–H bonds directed by a hydrosilyl group: synthesis of 1,1-benzyldiboronate esters. Chemical Science, 2014, 5, 694-698.	7.4	122
220	Regioselective, Asymmetric Formal Hydroamination of Unactivated Internal Alkenes. Angewandte Chemie - International Edition, 2016, 55, 776-780.	13.8	122
221	Direct Observation of \hat{l}^2 -Aryl Eliminations from Rh(I) Alkoxides. Journal of the American Chemical Society, 2006, 128, 3124-3125.	13.7	121
222	Late Stage Azidation of Complex Molecules. ACS Central Science, 2016, 2, 715-724.	11.3	121
223	Palladium-Catalyzed Arylation of Ethyl Cyanoacetate. Fluorescence Resonance Energy Transfer as a Tool for Reaction Discovery. Journal of the American Chemical Society, 2001, 123, 4641-4642.	13.7	120
224	Organometallic Chemistry of Amidate Complexes. Accelerating Effect of Bidentate Ligands on the Reductive Elimination ofN-Aryl Amidates from Palladium(II). Journal of the American Chemical Society, 2006, 128, 9044-9045.	13.7	120
225	Intramolecular Hydroamination of Unbiased and Functionalized Primary Aminoalkenes Catalyzed by a Rhodium Aminophosphine Complex. Journal of the American Chemical Society, 2010, 132, 13813-13822.	13.7	120
226	Nickel- vs Palladium-Catalyzed Synthesis of Protected Phenols from Aryl Halides. Journal of Organic Chemistry, 1997, 62, 5413-5418.	3.2	119
227	Copper-Mediated Perfluoroalkylation of Heteroaryl Bromides with (phen)CuR _F . Organic Letters, 2014, 16, 1744-1747.	4.6	119
228	Directly Observed Transmetalation from Boron to Rhodium. β-Aryl Elimination from Rh(I) Arylboronates and Diarylborinates. Journal of the American Chemical Society, 2007, 129, 1876-1877.	13.7	118
229	Enantioselective Iridium-Catalyzed Allylic Amination of Ammonia and Convenient Ammonia Surrogates. Organic Letters, 2007, 9, 3949-3952.	4.6	117
230	Direct, Iridium atalyzed Enantioselective and Regioselective Allylic Etherification with Aliphatic Alcohols. Angewandte Chemie - International Edition, 2008, 47, 1928-1931.	13.8	115
231	Pd-Catalyzed α-Arylation of Trimethylsilyl Enolates of α,α-Difluoroacetamides. Journal of the American Chemical Society, 2014, 136, 14401-14404.	13.7	115
232	Direct Observation of Aldehyde Insertion into Rhodiumâ^'Aryl and â^'Alkoxide Complexes. Journal of the American Chemical Society, 2002, 124, 1674-1679.	13.7	114
233	Tertiary Building Units:Â Synthesis, Structure, and Porosity of a Metalâ^'Organic Dendrimer Framework (MODF-1)⊥. Journal of the American Chemical Society, 2001, 123, 11482-11483.	13.7	113
234	Rhodium-Catalyzed Enantioselective Silylation of Arene C–H Bonds: Desymmetrization of Diarylmethanols. Journal of the American Chemical Society, 2015, 137, 6742-6745.	13.7	113

#	Article	IF	CITATIONS
235	Mechanistic Studies of Copper-Catalyzed Asymmetric Hydroboration of Alkenes. Journal of the American Chemical Society, 2017, 139, 12758-12772.	13.7	113
236	Femtosecond Excitation Energy Transport in Triarylamine Dendrimers. Journal of the American Chemical Society, 2002, 124, 6520-6521.	13.7	111
237	Sequential Catalytic Isomerization and Allylic Substitution. Conversion of Racemic Branched Allylic Carbonates to Enantioenriched Allylic Substitution Products. Journal of the American Chemical Society, 2006, 128, 11770-11771.	13.7	111
238	Iridium atalyzed H/D Exchange at Vinyl Groups without Olefin Isomerization. Angewandte Chemie - International Edition, 2008, 47, 5783-5787.	13.8	110
239	Origins of the Selectivity for Borylation of Primary over Secondary Câ ^{°°} H Bonds Catalyzed by Cp [*] -Rhodium Complexes. Journal of the American Chemical Society, 2010, 132, 3078-3091.	13.7	110
240	Mechanism of the Rhodium-Catalyzed Silylation of Arene C–H Bonds. Journal of the American Chemical Society, 2014, 136, 12064-12072.	13.7	109
241	A decarboxylative approach for regioselective hydroarylation of alkynes. Nature Chemistry, 2016, 8, 1144-1151.	13.6	109
242	Oxidative Addition of Aryl Sulfonates to Palladium(0) Complexes of Mono- and Bidentate Phosphines. Mild Addition of Aryl Tosylates and the Effects of Anions on Rate and Mechanism. Organometallics, 2004, 23, 194-202.	2.3	108
243	Reductive Elimination of Aryl Halides upon Addition of Hindered Alkylphosphines to Dimeric Arylpalladium(II) Halide Complexes. Organometallics, 2004, 23, 1533-1541.	2.3	106
244	Iridium-Catalyzed Preparation of Silylboranes by Silane Borylation and Their Use in the Catalytic Borylation of Arenes. Organometallics, 2008, 27, 6013-6019.	2.3	106
245	Oneâ€Pot Synthesis of Unsymmetrical Diaryl Thioethers by Palladium atalyzed Coupling of Two Aryl Bromides and a Thiol Surrogate. Chemistry - A European Journal, 2010, 16, 2355-2359.	3.3	106
246	Palladium-Catalyzed Addition of Mono- and Dicarbonyl Compounds to Conjugated Dienes. Journal of Organic Chemistry, 2004, 69, 7552-7557.	3.2	105
247	Fluorescence Resonance Energy Transfer (FRET) as a High-Throughput Assay for Coupling Reactions. Arylation of Amines as a Case Study. Journal of the American Chemical Society, 2003, 125, 6977-6985.	13.7	104
248	Distinct Electronic Effects on Reductive Eliminations of Symmetrical and Unsymmetrical Bis-Aryl Platinum Complexes. Journal of the American Chemical Society, 2004, 126, 13016-13027.	13.7	104
249	Nobleâ^'Metal Substitution in Hemoproteins: An Emerging Strategy for Abiological Catalysis. Accounts of Chemical Research, 2019, 52, 326-335.	15.6	104
250	Palladium-Catalyzed Arylation of Fluoroalkylamines. Journal of the American Chemical Society, 2015, 137, 8460-8468.	13.7	103
251	Enantioselective Total Syntheses of (â^)-Taiwaniaquinone H and (â^)-Taiwaniaquinol B by Iridium-Catalyzed Borylation and Palladium-Catalyzed Asymmetric α-Arylation. Journal of the American Chemical Society, 2011, 133, 2088-2091.	13.7	102
252	Iridium-Catalyzed Borylation of Secondary Benzylic C–H Bonds Directed by a Hydrosilane. Journal of the American Chemical Society, 2013, 135, 8157-8160.	13.7	102

#	Article	IF	CITATIONS
253	Rhodiumâ€Catalyzed Enantioselective Silylation of Cyclopropyl Câ^'H Bonds. Angewandte Chemie - International Edition, 2016, 55, 8723-8727.	13.8	102
254	Iridium-Catalyzed Regioselective and Enantioselective Allylation of Trimethylsiloxyfuran. Journal of the American Chemical Society, 2012, 134, 15249-15252.	13.7	101
255	Copper-Catalyzed Oxidative Dehydrogenative Carboxylation of Unactivated Alkanes to Allylic Esters via Alkenes. Journal of the American Chemical Society, 2014, 136, 17292-17301.	13.7	100
256	DNA binding properties of [Pt(NH3)(C6H11NH2)Cl2], a metabolite of an orally active platinum anticancer drug. Journal of the American Chemical Society, 1992, 114, 5646-5654.	13.7	99
257	A C–H Borylation Approach to Suzuki–Miyaura Coupling of Typically Unstable 2–Heteroaryl and Polyfluorophenyl Boronates. Organic Letters, 2012, 14, 4266-4269.	4.6	99
258	Iridium-Catalyzed Oxidative Olefination of Furans with Unactivated Alkenes. Journal of the American Chemical Society, 2014, 136, 10625-10631.	13.7	99
259	Palladium-Catalyzed Cross Coupling of Secondary and Tertiary Alkyl Bromides with a Nitrogen Nucleophile. ACS Central Science, 2016, 2, 647-652.	11.3	99
260	Synthesis of a highly reactive (benzyne)ruthenium complex. Carbon-carbon, carbon-hydrogen, nitrogen-hydrogen and oxygen-hydrogen activation reactions. Journal of the American Chemical Society, 1989, 111, 2717-2719.	13.7	98
261	A Heck-Type Reaction Involving Carbonâ~'Heteroatom Double Bonds. Rhodium(I)-Catalyzed Coupling of Aryl Halides with N-Pyrazyl Aldimines. Journal of the American Chemical Society, 2000, 122, 12043-12044.	13.7	98
262	Synthesis and chemistry of ruthenium hydrido aryloxides and arylamides. An investigation of structure, nitrogen-hydrogen and oxygen-hydrogen elimination processes, proton-catalyzed exchange reactions, and relative Ru-X bond strengths. Organometallics, 1991, 10, 1875-1887.	2.3	97
263	Iridium-Catalyzed Kinetic Asymmetric Transformations of Racemic Allylic Benzoates. Journal of the American Chemical Society, 2010, 132, 8918-8920.	13.7	97
264	Palladium-Catalyzed α-Arylation of Esters with Chloroarenes. Organic Letters, 2008, 10, 1549-1552.	4.6	95
265	Enantioselective, Iridium-Catalyzed Monoallylation of Ammonia. Journal of the American Chemical Society, 2009, 131, 11312-11313.	13.7	95
266	Catalytic Hydroxylation of Polyethylenes. ACS Central Science, 2017, 3, 895-903.	11.3	95
267	A Stoichiometric Aromatic CbH Borylation Catalyzed by Iridium(I)/2,2′-Bipyridine Complexes at Room Temperature. Angewandte Chemie, 2002, 114, 3182.	2.0	94
268	Resting State and Kinetic Studies on the Asymmetric Allylic Substitutions Catalyzed by Iridiumâ^'Phosphoramidite Complexes. Journal of the American Chemical Society, 2007, 129, 11680-11681.	13.7	94
269	Migratory Insertion of Alkenes into Metal–Oxygen and Metal–Nitrogen Bonds. Angewandte Chemie - International Edition, 2013, 52, 8510-8525.	13.8	94
270	Isolated Ir(V) Boryl Complexes and Their Reactions with Hydrocarbons. Journal of the American Chemical Society, 2001, 123, 8422-8423.	13.7	93

#	Article	IF	CITATIONS
271	Palladium-Catalyzed α-Arylation of Azlactones to Form Quaternary Amino Acid Derivatives. Organic Letters, 2003, 5, 1915-1918.	4.6	92
272	α-Arylation of Esters Catalyzed by the Pd(I) Dimer {[P(<i>t-</i> Bu) ₃]PdBr} ₂ . Organic Letters, 2008, 10, 1545-1548.	4.6	92
273	Rhodium Phosphineâ~ï€-Arene Intermediates in the Hydroamination of Alkenes. Journal of the American Chemical Society, 2011, 133, 2772-2782.	13.7	92
274	Autocatalytic Oxidative Addition of PhBr to Pd(P <i>^t</i> Bu ₃) ₂ via Pd(P <i>^t</i> Bu ₃) ₂ (H)(Br). Journal of the American Chemical Society, 2008, 130, 5842-5843.	13.7	91
275	Diastereo- and Enantioselective Iridium-Catalyzed Allylation of Cyclic Ketone Enolates: Synergetic Effect of Ligands and Barium Enolates. Journal of the American Chemical Society, 2014, 136, 15825-15828.	13.7	90
276	Palladium-Catalyzed Amination of Aryl Chlorides and Bromides with Ammonium Salts. Organic Letters, 2014, 16, 4388-4391.	4.6	90
277	Iridiumâ€Catalyzed Diastereoselective and Enantioselective Allylic Substitutions with Acyclic αâ€Alkoxy Ketones. Angewandte Chemie - International Edition, 2016, 55, 5819-5823.	13.8	90
278	Tetraazacyclophanes by Palladium-Catalyzed Aromatic Amination. Geometrically Defined, Stable, High-Spin Diradicals. Organic Letters, 1999, 1, 2057-2060.	4.6	89
279	Synthesis of monomeric ruthenium hydroxo complexes (PMe3)4Ru(R)(OH) (R = H, Me) and a unique dimeric ruthenium hydroxo-water complex [trans-Ru(H)(OH)(DMPE)2.cntdot.H2O]2. Journal of the American Chemical Society, 1993, 115, 5875-5876.	13.7	88
280	Intermolecular Insertion of Ethylene and Octene into a Palladiumâ^'Amide Bond. Spectroscopic Evidence for an Ethylene Amido Intermediate. Journal of the American Chemical Society, 2010, 132, 6302-6303.	13.7	88
281	Pd-Catalyzed α-Arylation of Trimethylsilyl Enol Ethers with Aryl Bromides and Chlorides: A Synergistic Effect of Two Metal Fluorides as Additives. Angewandte Chemie - International Edition, 2006, 45, 5852-5855.	13.8	87
282	Catalysis with Platinum-Group Alkylamido Complexes. The Active Palladium Amide in Catalytic Aryl Halide Aminations As Deduced from Kinetic Data and Independent Generation. Organometallics, 1996, 15, 2794-2805.	2.3	86
283	Direct Measurement of the Thermodynamics of Vinylarene Hydroamination. Journal of the American Chemical Society, 2006, 128, 9306-9307.	13.7	86
284	Fragmentation of Lignin Samples with Commercial Pd/C under Ambient Pressure of Hydrogen. ACS Catalysis, 2016, 6, 7385-7392.	11.2	86
285	Enantioselective Borylation of Aromatic Câ°'H Bonds with Chiral Dinitrogen Ligands. Angewandte Chemie - International Edition, 2017, 56, 7205-7208.	13.8	85
286	Beyond Iron: Iridium-Containing P450 Enzymes for Selective Cyclopropanations of Structurally Diverse Alkenes. ACS Central Science, 2017, 3, 302-308.	11.3	85
287	Mechanistic Studies on Oxidative Addition of Aryl Halides and Triflates to Pd(BINAP)2and Structural Characterization of the Product from Aryl Triflate Addition in the Presence of Amine. Organometallics, 2002, 21, 491-502.	2.3	84
288	Regiospecific Side-Chain Functionalization of Linear Low-Density Polyethylene with Polar Groups. Angewandte Chemie - International Edition, 2005, 44, 6410-6413.	13.8	84

#	Article	IF	CITATIONS
289	Trans Influence on the Rate of Reductive Elimination. Reductive Elimination of Amines from Isomeric Arylpalladium Amides with Unsymmetrical Coordination Spheres. Journal of the American Chemical Society, 2003, 125, 16347-16360.	13.7	83
290	Sterically Controlled Alkylation of Arenes through Iridium atalyzed CH Borylation. Angewandte Chemie - International Edition, 2013, 52, 933-937.	13.8	83
291	Fluorodecarboxylation for the Synthesis of Trifluoromethyl Aryl Ethers. Angewandte Chemie - International Edition, 2016, 55, 9758-9762.	13.8	83
292	Mechanism of the Ullmann Biaryl Ether Synthesis Catalyzed by Complexes of Anionic Ligands: Evidence for the Reaction of Iodoarenes with Ligated Anionic Cu ^I Intermediates. Journal of the American Chemical Society, 2018, 140, 793-806.	13.7	83
293	Desymmetrization of difluoromethylene groups by C–F bond activation. Nature, 2020, 583, 548-553.	27.8	83
294	Intermolecular Migratory Insertion of Unactivated Olefins into Palladium–Nitrogen Bonds. Steric and Electronic Effects on the Rate of Migratory Insertion. Journal of the American Chemical Society, 2011, 133, 15661-15673.	13.7	82
295	Sterically Controlled Iodination of Arenes via Iridium-Catalyzed C–H Borylation. Organic Letters, 2013, 15, 140-143.	4.6	82
296	Effects of Bases and Halides on the Amination of Chloroarenes Catalyzed by Pd(PtBu3)2. Organometallics, 2007, 26, 340-351.	2.3	80
297	Origins of Enantioselectivity during Allylic Substitution Reactions Catalyzed by Metallacyclic Iridium Complexes. Journal of the American Chemical Society, 2012, 134, 8136-8147.	13.7	79
298	Snap deconvolution: An informatics approach to high-throughput discovery of catalytic reactions. Science, 2017, 357, 175-181.	12.6	79
299	Mechanistic Investigations of the Hydrogenolysis of Diaryl Ethers Catalyzed by Nickel Complexes of <i>N</i> -Heterocyclic Carbene Ligands. Journal of the American Chemical Society, 2017, 139, 17667-17676.	13.7	79
300	Mechanism off ² -Hydrogen Elimination from Square Planar Iridium(I) Alkoxide Complexes with Labile Dative Ligands. Journal of the American Chemical Society, 2001, 123, 7220-7227.	13.7	78
301	Directly-Observed \hat{I}^2 -Hydrogen Elimination of a Late Transition Metal Amido Complex and Unusual Fate of Imine Byproducts. Journal of the American Chemical Society, 1996, 118, 7010-7011.	13.7	77
302	Mechanistic Studies of Titanocene-Catalyzed Alkene and Alkyne Hydroboration:  Borane Complexes as Catalytic Intermediates. Organometallics, 2000, 19, 30-38.	2.3	77
303	Slow Reductive Elimination from Arylpalladium Parent Amido Complexes. Journal of the American Chemical Society, 2010, 132, 11830-11833.	13.7	77
304	Ir-Catalyzed Enantioselective, Intramolecular Silylation of Methyl C–H Bonds. Journal of the American Chemical Society, 2017, 139, 12137-12140.	13.7	77
305	Iridium-Catalyzed, β-Selective C(sp3)–H Silylation of Aliphatic Amines To Form Silapyrrolidines and 1,2-Amino Alcohols. Journal of the American Chemical Society, 2018, 140, 18032-18038.	13.7	77
306	Selective, Catalytic Oxidations of C–H Bonds in Polyethylenes Produce Functional Materials with Enhanced Adhesion. CheM, 2021, 7, 137-145.	11.7	77

#	Article	IF	CITATIONS
307	Structure and reactions of oxametallacyclobutanes and oxametallacyclobutenes of ruthenium. Organometallics, 1991, 10, 3344-3362.	2.3	76
308	Rhodium-Catalyzed Regioselective Silylation of Alkyl C–H Bonds for the Synthesis of 1,4-Diols. Journal of the American Chemical Society, 2018, 140, 1460-1470.	13.7	76
309	Understanding the Coupling of Heteroaromatic Substrates:  Synthesis, Structures, and Reductive Eliminations of Heteroarylpalladium Amido Complexes. Organometallics, 2003, 22, 3394-3403.	2.3	75
310	One-Pot Anti-Markovnikov Hydroamination of Unactivated Alkenes by Hydrozirconation and Amination. Journal of Organic Chemistry, 2013, 78, 8909-8914.	3.2	75
311	Origins of Regioselectivity in Iridium Catalyzed Allylic Substitution. Journal of the American Chemical Society, 2015, 137, 14968-14981.	13.7	75
312	First Transition Metal-Boryl Bond Energy and Quantitation of Large Differences in Sequential Bond Dissociation Energies of Boranes. Journal of the American Chemical Society, 1994, 116, 4121-4122.	13.7	74
313	Energetics and Mechanism of Alkylamine Nâ^'H Bond Cleavage by Palladium Hydroxides:Â Nâ^'H Activation by Unusual Acidâ^'Base Chemistry. Organometallics, 1997, 16, 5706-5715.	2.3	74
314	Iridium atalyzed Regioselective Silylation of Aromatic and Benzylic CH Bonds Directed by a Secondary Amine. Angewandte Chemie - International Edition, 2014, 53, 8471-8474.	13.8	74
315	Oxygen- and carbon-bound ruthenium enolates: migratory insertion, reductive elimination, .betahydrogen elimination, and cyclometalation reactions. Organometallics, 1991, 10, 3326-3344.	2.3	73
316	Structure, synthesis, and chemistry of ruthenium complex (PMe3)4Ru(.eta.2-benzyne). Reactions with arenes, alkenes, and heteroatom-containing organic compounds. Synthesis and structure of a monomeric hydroxide complex. Journal of the American Chemical Society, 1991, 113, 3404-3418.	13.7	73
317	Palladium-Catalyzed Enantioselective α-Arylation of α-Fluoroketones. Journal of the American Chemical Society, 2016, 138, 15980-15986.	13.7	73
318	Application of Trimethylgermanyl-Substituted Bisphosphine Ligands with Enhanced Dispersion Interactions to Copper-Catalyzed Hydroboration of Disubstituted Alkenes. Journal of the American Chemical Society, 2020, 142, 18213-18222.	13.7	73
319	Regiodefined Poly(N-arylaniline)s and Donorâ [~] 'Acceptor Copolymers via Palladium-Mediated Amination Chemistry. Macromolecules, 1998, 31, 1700-1703.	4.8	72
320	Enantioselective Functionalization of Allylic C–H Bonds Following a Strategy of Functionalization and Diversification. Journal of the American Chemical Society, 2013, 135, 17983-17989.	13.7	72
321	Iridium-Catalyzed, Hydrosilyl-Directed Borylation of Unactivated Alkyl C–H Bonds. Journal of the American Chemical Society, 2016, 138, 762-765.	13.7	72
322	Addition of Catecholborane to a Ruthenium-Alkyl: Evidence for .sigmaBond Metathesis with a Low-Valent, Late Transition Metal. Journal of the American Chemical Society, 1994, 116, 1839-1844.	13.7	71
323	Tropene Derivatives by Sequential Intermolecular and Transannular, Intramolecular Palladium-Catalyzed Hydroamination of Cycloheptatriene. Journal of the American Chemical Society, 2006, 128, 8134-8135.	13.7	71
324	Copper(I) Enolate Complexes in αâ€Arylation Reactions: Synthesis, Reactivity, and Mechanism. Angewandte Chemie - International Edition, 2012, 51, 1028-1032.	13.8	71

#	Article	IF	CITATIONS
325	Insertion reactions of carbon monoxide and carbon dioxide with ruthenium benzyl, arylamido, and aryloxide complexes: a comparison of the reactivity of ruthenium-carbon, ruthenium-nitrogen, and ruthenium-oxygen bonds. Journal of the American Chemical Society, 1991, 113, 6499-6508.	13.7	70
326	Recent advances in the discovery of organometallic catalysts using high-throughput screening assays. Current Opinion in Chemical Biology, 2003, 7, 420-426.	6.1	70
327	Palladium-Catalyzed α-Arylation of Zinc Enolates of Esters: Reaction Conditions and Substrate Scope. Journal of Organic Chemistry, 2013, 78, 8250-8266.	3.2	70
328	Insertions of Ketones and Nitriles into Organorhodium(I) Complexes and β-Hydrocarbyl Eliminations from Rhodium(I) Alkoxo and Iminyl Complexes. Organometallics, 2008, 27, 4749-4757.	2.3	69
329	Iridium-Catalyzed Enantioselective Allylic Substitution of Enol Silanes from Vinylogous Esters and Amides. Journal of the American Chemical Society, 2015, 137, 13972-13979.	13.7	69
330	A Chiral Nitrogen Ligand for Enantioselective, Iridium atalyzed Silylation of Aromatic Câ^'H Bonds. Angewandte Chemie - International Edition, 2017, 56, 1092-1096.	13.8	66
331	Boryls Bound to Iron Carbonyl. Structure of a Rare Bis(boryl) Complex, Synthesis of the First Anionic Boryl, and Reaction Chemistry That Includes the Synthetic Equivalent of Boryl Anion Transfer. Organometallics, 1996, 15, 400-407.	2.3	65
332	Transfer of Amido Groups from Isolated Rhodium(I) Amides to Alkenes and Vinylarenes. Journal of the American Chemical Society, 2005, 127, 12066-12073.	13.7	65
333	Palladium-Catalyzed, Enantioselective α-Arylation of α-Fluorooxindoles. Organic Letters, 2017, 19, 1390-1393.	4.6	65
334	Übergangsmetallâ€katalysierte selektive Funktionalisierung von C(sp ³)â€Hâ€Bindungen in Naturstoffen. Angewandte Chemie, 2018, 130, 4309-4317.	2.0	65
335	Catalytic asymmetric addition of an amine N–H bond across internal alkenes. Nature, 2020, 588, 254-260.	27.8	64
336	Iridium atalyzed Enantioselective Allylic Substitution of Unstabilized Enolates Derived from α,βâ€Unsaturated Ketones. Angewandte Chemie - International Edition, 2014, 53, 8691-8695.	13.8	63
337	General Nâ^'H Activation of Primary Alkylamines by a Late Transition-Metal Complex. Journal of the American Chemical Society, 1996, 118, 4206-4207.	13.7	62
338	Palladium-Catalyzed Amination of Aryl Halides and Sulfonates. , 0, , 107-168.		62
339	Iridium-Catalyzed, Intermolecular Hydroetherification of Unactivated Aliphatic Alkenes with Phenols. Journal of the American Chemical Society, 2013, 135, 9303-9306.	13.7	62
340	Siteâ€Selective Functionalization of (sp ³)Câ^'H Bonds Catalyzed by Artificial Metalloenzymes Containing an Iridiumâ€Porphyrin Cofactor. Angewandte Chemie - International Edition, 2019, 58, 13954-13960.	13.8	62
341	Synthesis of Copper(I) Thiolate Complexes in the Thioetherification of Aryl Halides. Organometallics, 2012, 31, 8031-8037.	2.3	61
342	Iridium atalyzed Regio―and Enantioselective Allylic Substitution of Silyl Dienolates Derived from Dioxinones. Angewandte Chemie - International Edition, 2014, 53, 12172-12176.	13.8	61

#	Article	IF	CITATIONS
343	Development of a One-Pot Tandem Reaction Combining Ruthenium-Catalyzed Alkene Metathesis and Enantioselective Enzymatic Oxidation To Produce Aryl Epoxides. ACS Catalysis, 2015, 5, 3817-3822.	11.2	61
344	Trimethylphosphate as a Methylating Agent for Cross Coupling: A Slow-Release Mechanism for the Methylation of Arylboronic Esters. Journal of the American Chemical Society, 2018, 140, 17197-17202.	13.7	61
345	Site-selective oxidation, amination and epimerization reactions of complex polyols enabled by transfer hydrogenation. Nature Chemistry, 2017, 9, 1213-1221.	13.6	60
346	Asymmetric Catalysis Special Feature Part II: Editing the stereochemical elements in an iridium catalyst for enantioselective allylic amination. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 5830-5833.	7.1	59
347	Development of Chiral Ligands for the Transitionâ€Metalâ€Catalyzed Enantioselective Silylation and Borylation of Câ^'H Bonds. Angewandte Chemie - International Edition, 2022, 61, .	13.8	59
348	Reductive Elimination of Ether from Tâ€Shaped, Monomeric Arylpalladium Alkoxides. Angewandte Chemie - International Edition, 2007, 46, 7674-7677.	13.8	58
349	Synthesis of ruthenium enolate (PMe3)4Ru(Me)(OC(CH2)Me) as an equilibrium mixture of oxygen- and carbon-bound transition-metal enolates. Thermal elimination of methane to form an .eta.4-oxatrimethylenemethane complex. Journal of the American Chemical Society, 1990, 112, 5670-5671.	13.7	57
350	Reactivity of Tungstenocene with BB and BH Bonds versus CH Bonds. Angewandte Chemie International Edition in English, 1996, 35, 315-317.	4.4	57
351	β-Aryl Eliminations from Rh(I) Iminyl Complexes. Journal of the American Chemical Society, 2005, 127, 11618-11619.	13.7	57
352	Relative Rates for the Amination of η3-Allyl and η3-Benzyl Complexes of Palladium. Journal of the American Chemical Society, 2006, 128, 16010-16011.	13.7	57
353	Iridiumâ€Catalyzed, Diastereoselective Dehydrogenative Silylation of Terminal Alkenes with (TMSO) ₂ MeSiH. Angewandte Chemie - International Edition, 2013, 52, 8984-8989.	13.8	57
354	Iridium-Catalyzed Silylation of C–H Bonds in Unactivated Arenes: A Sterically Encumbered Phenanthroline Ligand Accelerates Catalysis. Journal of the American Chemical Society, 2019, 141, 7063-7072.	13.7	57
355	Unnatural biosynthesis by an engineered microorganism with heterologously expressed natural enzymes and an artificial metalloenzyme. Nature Chemistry, 2021, 13, 1186-1191.	13.6	56
356	The Largest Discrete Oligo(m-aniline). An Exponential Growth Strategy Using Palladium-Catalyzed Amination of Aryl Sulfonates. Macromolecules, 1998, 31, 6737-6739.	4.8	55
357	Mechanistic Studies of Palladium-Catalyzed Aminocarbonylation of Aryl Chlorides with Carbon Monoxide and Ammonia. Journal of the American Chemical Society, 2018, 140, 7979-7993.	13.7	55
358	Structural and Reaction Chemistry of Tungstenocene Boryl Complexes. Organometallics, 1996, 15, 5350-5358.	2.3	54
359	Synthesis of Aryldifluoroamides by Copperâ€Catalyzed Crossâ€Coupling. Angewandte Chemie - International Edition, 2016, 55, 4567-4572.	13.8	54
360	Enantioselective Synthesis of Tertiary Allylic Fluorides by Iridiumâ€Catalyzed Allylic Fluoroalkylation. Angewandte Chemie - International Edition, 2018, 57, 13125-13129.	13.8	54

#	Article	IF	CITATIONS
361	Carbonâ^'Oxygen Bond Formation between a Terminal Alkoxo Ligand and a Coordinated Olefin. Evidence for Olefin Insertion into a Rhodium Alkoxide. Journal of the American Chemical Society, 2006, 128, 9642-9643.	13.7	52
362	Nâ^'H Activation of Hydrazines by Iridium(I). Double Nâ^'H Activation To Form Iridium Aminonitrene Complexes. Journal of the American Chemical Society, 2010, 132, 11458-11460.	13.7	52
363	Assessment of the Electronic Factors Determining the Thermodynamics of "Oxidative Addition―of C–H and N–H Bonds to Ir(I) Complexes. Journal of the American Chemical Society, 2016, 138, 149-163.	13.7	52
364	C(sp ³)–N Bondâ€Forming Reductive Elimination of Amines: Reactions of Bisphosphine‣igated Benzylpalladium(II) Diarylamido Complexes. Angewandte Chemie - International Edition, 2010, 49, 793-796.	13.8	50
365	Mechanism of Ni-Catalyzed Oxidations of Unactivated C(sp ³)–H Bonds. Journal of the American Chemical Society, 2020, 142, 19239-19248.	13.7	46
366	A Short Synthesis of Tetraalkoxydiborane(4) Reagents. Organometallics, 2003, 22, 365-369.	2.3	44
367	Trifluoromethylation of Arylsilanes with [(phen)CuCF ₃]. Angewandte Chemie - International Edition, 2016, 55, 8054-8057.	13.8	44
368	Palladium-Catalyzed Cross-Coupling of Ethyl Bromodifluoroacetate with Aryl Bromides or Triflates and Cross-Coupling of Ethyl Bromofluoroacetate with Aryl Iodides. Organic Letters, 2017, 19, 2610-2613.	4.6	42
369	Iridium atalyzed Enantioselective Allylic Substitution of Aliphatic Esters with Silyl Ketene Acetals as the Ester Enolates. Angewandte Chemie - International Edition, 2017, 56, 8887-8891.	13.8	42
370	Iridium atalyzed Silylation of Fiveâ€Membered Heteroarenes: High Sterically Derived Selectivity from a Pyridylâ€Imidazoline Ligand. Angewandte Chemie - International Edition, 2020, 59, 6074-6081.	13.8	42
371	Time-resolved IR Studies on the Mechanism for the Functionalization of Primary Câ^'H Bonds by Photoactivated Cp*W(CO) ₃ (Bpin). Journal of the American Chemical Society, 2010, 132, 1848-1859.	13.7	41
372	Iridium atalyzed Diastereoselective and Enantioselective Allylic Substitutions with Acyclic αâ€Alkoxy Ketones. Angewandte Chemie, 2016, 128, 5913-5917.	2.0	41
373	Traceless Silylation of β-C(sp ³)–H Bonds of Alcohols via Perfluorinated Acetals. Journal of the American Chemical Society, 2018, 140, 1502-1507.	13.7	41
374	Origin of the Difference in Reactivity between Ir Catalysts for the Borylation of C–H Bonds. Journal of the American Chemical Society, 2019, 141, 16479-16485.	13.7	41
375	A photochemical source of dibromo- and dichlorocarbene. Tetrahedron Letters, 1986, 27, 5907-5910.	1.4	40
376	CHEMICAL SYNTHESIS: Raising the Bar for the. Science, 2002, 297, 1653-1654.	12.6	39
377	Imine Insertion into a Late Metalâ~'Carbon Bond To Form a Stable Amido Complex. Journal of the American Chemical Society, 2004, 126, 2694-2695.	13.7	39

#	Article	IF	CITATIONS
379	Computational Studies of the Relative Rates for Migratory Insertions of Alkenes into Square-Planar, Methyl, â''Amido, and â''Hydroxo Complexes of Rhodium. Journal of the American Chemical Society, 2009, 131, 14703-14712.	13.7	39
380	Synthesis of heteroaromatic trifluoromethyl ethers with trifluoromethyl triflate as the source of the trifluoromethoxy group. Chemical Communications, 2018, 54, 10124-10127.	4.1	39
381	A Multicatalytic Approach to the Hydroaminomethylation of αâ€Olefins. Angewandte Chemie - International Edition, 2019, 58, 3368-3372.	13.8	39
382	Site-Selective Silver-Catalyzed C–H Bond Deuteration of Five-Membered Aromatic Heterocycles and Pharmaceuticals. ACS Catalysis, 2021, 11, 1119-1127.	11.2	39
383	Direct, Intermolecular, Enantioselective, Iridium-Catalyzed Allylation of Carbamates to Form Carbamate-Protected, Branched Allylic Amines. Organic Letters, 2009, 11, 2944-2947.	4.6	37
384	Palladium-Catalyzed Oxidation of β-C(sp ³)–H Bonds of Primary Alkylamines through a Rare Four-Membered Palladacycle Intermediate. Journal of the American Chemical Society, 2020, 142, 7912-7919.	13.7	37
385	Reactions of an Arylrhodium Complex with Aldehydes, Imines, Ketones, and Alkynones. New Classes of Insertion Reactions. Organometallics, 2004, 23, 4594-4607.	2.3	36
386	Mechanistic Studies on Rhodium-Catalyzed Enantioselective Silylation of Aryl C–H Bonds. Journal of the American Chemical Society, 2017, 139, 4879-4886.	13.7	36
387	Iridiumâ€Catalyzed, Silylâ€Directed, <i>peri</i> â€Borylation of Câ^'H Bonds in Fused Polycyclic Arenes and Heteroarenes. Angewandte Chemie - International Edition, 2018, 57, 10163-10167.	13.8	36
388	Mechanistic Study of β-Hydrogen Elimination from Organoplatinum(II) Enolate Complexes. Journal of the American Chemical Society, 2008, 130, 15627-15635.	13.7	35
389	Palladium-Catalyzed α-Arylation of Carboxylic Acids and Secondary Amides via a Traceless Protecting Strategy. Journal of the American Chemical Society, 2019, 141, 11749-11753.	13.7	35
390	Reductive Elimination from Arylpalladium Cyanide Complexes. Journal of the American Chemical Society, 2012, 134, 5758-5761.	13.7	34
391	Chemo―and Regioselective Hydrogenolysis of Diaryl Ether Câ~'O Bonds by a Robust Heterogeneous Ni/C Catalyst: Applications to the Cleavage of Complex Ligninâ€Related Fragments. Angewandte Chemie, 2016, 128, 1496-1500.	2.0	34
392	Enantioselective Borylation of Aromatic Câ^'H Bonds with Chiral Dinitrogen Ligands. Angewandte Chemie, 2017, 129, 7311-7314.	2.0	34
393	Transitionâ€Metalâ€Catalyzed Monofluoroalkylation: Strategies for the Synthesis of Alkyl Fluorides by Câ^'C Bond Formation. Angewandte Chemie - International Edition, 2022, 61, .	13.8	34
394	Mechanism of the carbon-carbon cleavage of acetone by the ruthenium benzyne complex (PMe3)4Ru(.eta.2-C6H4): formation and reactivity of an oxametallacyclobutane complex. Journal of the American Chemical Society, 1990, 112, 3234-3236.	13.7	33
395	Palladium-Catalyzed Synthesis of Aryl Ethers and Related Compounds Containing S and Se. , 0, , 1097-1106.		33
396	Oxalohydrazide Ligands for Copper atalyzed Câ^'O Coupling Reactions with High Turnover Numbers. Angewandte Chemie - International Edition, 2021, 60, 8203-8211.	13.8	33

#	Article	IF	CITATIONS
397	Rhodium atalyzed Enantioselective Silylation of Cyclopropyl Câ^'H Bonds. Angewandte Chemie, 2016, 128, 8865-8869.	2.0	32
398	Combining Rh-Catalyzed Diazocoupling and Enzymatic Reduction To Efficiently Synthesize Enantioenriched 2-Substituted Succinate Derivatives. ACS Catalysis, 2017, 7, 2548-2552.	11.2	32
399	Enantioselective α-functionalizations of ketones via allylic substitution of silyl enol ethers. Nature Chemistry, 2019, 11, 177-183.	13.6	32
400	Effect of Ligand Structure on the Electron Density and Activity of Iridium Catalysts for the Borylation of Alkanes. ACS Catalysis, 2020, 10, 3415-3424.	11.2	32
401	Direct Arylation of Simple Arenes with Aryl Bromides by Synergistic Silver and Palladium Catalysis. ACS Catalysis, 2021, 11, 1430-1434.	11.2	32
402	Inter- and intramolecular carbon-hydrogen bond forming and cleavage reactivity of two different types of poly(trimethylphosphine)ruthenium intermediates. Journal of the American Chemical Society, 1991, 113, 6492-6498.	13.7	31
403	Iridiumâ€Catalyzed Regio―and Enantioselective Allylic Substitution of Trisubstituted Allylic Electrophiles. Angewandte Chemie - International Edition, 2016, 55, 11651-11655.	13.8	31
404	Polysilylether: A Degradable Polymer from Biorenewable Feedstocks. Angewandte Chemie - International Edition, 2016, 55, 11872-11876.	13.8	30
405	Abiotic reduction of ketones with silanes catalysed by carbonic anhydrase through an enzymatic zinc hydride. Nature Chemistry, 2021, 13, 312-318.	13.6	30
406	Iridium-catalyzed silylation of unactivated C–H bonds. Tetrahedron, 2019, 75, 4059-4070.	1.9	29
407	Ruthenium-Catalyzed Hydroamination of Unactivated Terminal Alkenes with Stoichiometric Amounts of Alkene and an Ammonia Surrogate by Sequential Oxidation and Reduction. Journal of the American Chemical Society, 2021, 143, 359-368.	13.7	29
408	Reductive Elimination of Alkylamines from Low-Valent, Alkylpalladium(II) Amido Complexes. Journal of the American Chemical Society, 2012, 134, 15281-15284.	13.7	28
409	Mechanism of the Iridium-Catalyzed Silylation of Aromatic C–H Bonds. Journal of the American Chemical Society, 2020, 142, 10494-10505.	13.7	28
410	Site Selective Chlorination of C(sp ³)â^'H Bonds Suitable for Lateâ€6tage Functionalization. Angewandte Chemie - International Edition, 2021, 60, 8276-8283.	13.8	28
411	Mechanistic Investigation of the Iron-Catalyzed Azidation of Alkyl C(<i>sp</i> ³)–H Bonds with Zhdankin's λ ³ -Azidoiodane. Journal of the American Chemical Society, 2021, 143, 16184-16196.	13.7	28
412	A phosphorus-carbon bond cleavage reaction of coordinated trimethylphosphine in (PMe3)4Ru(OC6H4Me)2. Journal of Organometallic Chemistry, 1990, 394, 417-432.	1.8	27
413	Alkyl, aryl, hydrido, and acetate complexes of (DMPM)2Ru [DMPM = bis(dimethylphosphino)methane]: reductive elimination and oxidative addition of carbon-hydrogen bonds. Organometallics, 1991, 10, 1710-1719.	2.3	27
414	Ruthenium-Catalyzed, Chemoselective and Regioselective Oxidation of Polyisobutene. Journal of the American Chemical Society, 2021, 143, 4531-4535.	13.7	27

#	Article	IF	CITATIONS
415	Synthesis and DNA binding properties of a cisplatin analog containing a tethered dansyl group. Journal of the American Chemical Society, 1992, 114, 8292-8293.	13.7	25
416	Oxidative Addition of Phenyl Bromide to Pd(BINAP) vs Pd(BINAP)(amine). Evidence for Addition to Pd(BINAP). Organic Letters, 2006, 8, 851-854.	4.6	25
417	Fluorodecarboxylation for the Synthesis of Trifluoromethyl Aryl Ethers. Angewandte Chemie, 2016, 128, 9910-9914.	2.0	25
418	Copper-Mediated C–N Coupling of Arylsilanes with Nitrogen Nucleophiles. Organic Letters, 2016, 18, 5244-5247.	4.6	25
419	Synthesis, Characterization, and Reactivity of Palladium Fluoroenolate Complexes. Journal of the American Chemical Society, 2017, 139, 16088-16091.	13.7	25
420	Conversion of 1,3-disubstituted arenes to chiral α,α-diaryl methylammonium chlorides using arene borylation. Tetrahedron, 2008, 64, 6824-6830.	1.9	24
421	Palladium-Catalyzed Methylation of Aryl, Heteroaryl, and Vinyl Boronate Esters. Organic Letters, 2019, 21, 1337-1341.	4.6	24
422	<i>gem</i> â€Ðifluoroallylation of Aryl Halides and Pseudo Halides with Difluoroallylboron Reagents in High Regioselectivity. Angewandte Chemie - International Edition, 2021, 60, 25746-25752.	13.8	24
423	Copper-Catalyzed Defluorinative Borylation and Silylation of <i>gem</i> -Difluoroallyl Groups. Organic Letters, 2020, 22, 6805-6809.	4.6	23
424	Synthese, Struktur und ReaktivitÃ∉von [Cp ₂ Ti(HBcat)(PMe ₃)]: ein Monoboranâ€ĩfâ€Komplex. Angewandte Chemie, 1997, 109, 1536-1538.	2.0	21
425	Reductive Elimination from Phosphine-Ligated Alkylpalladium(II) Amido Complexes To Form sp ³ Carbon–Nitrogen Bonds. Journal of the American Chemical Society, 2018, 140, 4893-4904.	13.7	21
426	Adsorption of butachlor to soils. Journal of Agricultural and Food Chemistry, 1987, 35, 397-402.	5.2	20
427	Generation, Characterization, and Tunable Reactivity of Organometallic Fragments Bound to a Protein Ligand. Journal of the American Chemical Society, 2015, 137, 8261-8268.	13.7	20
428	Synthetic and Computational Studies on the Rhodium-Catalyzed Hydroamination of Aminoalkenes. ACS Catalysis, 2016, 6, 5651-5665.	11.2	20
429	Enantioselective hydroamination of unactivated terminal alkenes. CheM, 2022, 8, 532-542.	11.7	20
430	Nickel and Palladium-Catalyzed Cross-Couplings that Form Carbon-Heteroatom and Carbon-Element Bonds. Current Organic Chemistry, 1997, 1, 287-305.	1.6	20
431	Enantioselective Synthesis of Tertiary Allylic Fluorides by Iridiumâ€Catalyzed Allylic Fluoroalkylation. Angewandte Chemie, 2018, 130, 13309-13313.	2.0	19
432	Oxidation of Hindered Allylic C–H Bonds with Applications to the Functionalization of Complex Molecules. ACS Catalysis, 2017, 7, 1998-2001.	11.2	18

#	Article	IF	CITATIONS
433	Oxidative Addition and Reductive Elimination Reactions oftrans-[Ir(PPh3)2(CO)(NC4H4)] andtrans,cis-[Ir(PPh3)2(H)2(CO)(NC4H4)], Including Nâ^'H Bond-Forming Reductive Elimination of Pyrrole. Organometallics, 1998, 17, 1134-1143.	2.3	17
434	Palladium-catalyzed α-arylation for the addition of small rings to aromatic compounds. Nature Communications, 2019, 10, 4083.	12.8	17
435	Unusual Electronic Effects of Ancillary Ligands on the Perfluoroalkylation of Aryl Iodides and Bromides Mediated by Copper(I) Pentafluoroethyl Complexes of Substituted Bipyridines. Journal of the American Chemical Society, 2019, 141, 19458-19465.	13.7	16
436	Iridiumâ€Catalyzed Silylation of Fiveâ€Membered Heteroarenes: High Sterically Derived Selectivity from a Pyridylâ€Imidazoline Ligand. Angewandte Chemie, 2020, 132, 6130-6137.	2.0	16
437	Assembly and Evolution of Artificial Metalloenzymes within <i>E. coli</i> Nissle 1917 for Enantioselective and Site-Selective Functionalization of C─H and Câ•C Bonds. Journal of the American Chemical Society, 2022, 144, 883-890.	13.7	16
438	Synthesis of Aryldifluoroamides by Copper atalyzed Cross oupling. Angewandte Chemie, 2016, 128, 4643-4648.	2.0	15
439	Cross oupling between Hydrazine and Aryl Halides with Hydroxide Base at Low Loadings of Palladium by Rateâ€Đetermining Deprotonation of Bound Hydrazine. Angewandte Chemie - International Edition, 2021, 60, 399-408.	13.8	15
440	Direct Observation of Diastereomeric α-C-Bound Enolates during Enantioselective α-Arylations: Synthesis, Characterization, and Reactivity of Arylpalladium Fluorooxindole Complexes. Journal of the American Chemical Society, 2021, 143, 11741-11750.	13.7	15
441	Development of Chiral Ligands for the Transitionâ€Metalâ€Catalyzed Enantioselective Silylation and Borylation of Câ^'H Bonds. Angewandte Chemie, 2022, 134, e202113343.	2.0	15
442	Progress, Challenges, and Opportunities with Artificial Metalloenzymes in Biosynthesis. Biochemistry, 2023, 62, 221-228.	2.5	15
443	Iridium atalyzed Enantioselective Allylic Substitution of Aliphatic Esters with Silyl Ketene Acetals as the Ester Enolates. Angewandte Chemie, 2017, 129, 9013-9017.	2.0	14
444	Directed Evolution of Artificial Metalloenzymes in Whole Cells. Angewandte Chemie - International Edition, 2022, 61, .	13.8	14
445	Iridium atalyzed, Silylâ€Directed, <i>peri</i> â€Borylation of Câ^'H Bonds in Fused Polycyclic Arenes and Heteroarenes. Angewandte Chemie, 2018, 130, 10320-10324.	2.0	13
446	Reductive Elimination to Form C(sp ³)–N Bonds from Palladium(II) Primary Alkyl Complexes. Organometallics, 2018, 37, 3243-3247.	2.3	12
447	Sequential Xanthalation and <i>O</i> -Trifluoromethylation of Phenols: AÂProcedure for the Synthesis of Aryl Trifluoromethyl Ethers. Journal of Organic Chemistry, 2019, 84, 15767-15776.	3.2	12
448	Copper atalyzed Dehydrogenative Amidation of Light Alkanes. Angewandte Chemie - International Edition, 2021, 60, 18467-18471.	13.8	12
449	Borylation of Arenes with Bis(hexylene glycolato)diboron. Synthesis, 2013, 45, 1837-1842.	2.3	11
450	Iridiumâ€Catalyzed Regio―and Enantioselective Allylic Substitution of Trisubstituted Allylic Electrophiles. Angewandte Chemie, 2016, 128, 11823-11827.	2.0	11

#	Article	IF	CITATIONS
451	Trifluoromethylation of Arylsilanes with [(phen)CuCF ₃]. Angewandte Chemie, 2016, 128, 8186-8189.	2.0	11
452	Contra-thermodynamic Olefin Isomerization by Chain-Walking Hydrofunctionalization and Formal Retro-hydrofunctionalization. Organic Letters, 2019, 21, 7129-7133.	4.6	11
453	New "Cats―in the House: Chemistry Meets Biology in Artificial Metalloenzymes and Repurposed Metalloenzymes. Accounts of Chemical Research, 2019, 52, 1145-1145.	15.6	11
454	In Praise of Basic Research as a Vehicle to Practical Applications: Palladium atalyzed Coupling to Form Carbonâ€Nitrogen Bonds. Israel Journal of Chemistry, 2020, 60, 177-179.	2.3	11
455	Recipes for excess. Nature, 2005, 437, 487-488.	27.8	9
456	Exciton Trapping in an Organic Dendrimer Possessing No Energy Gradient. Journal of Physical Chemistry C, 2008, 112, 2235-2238.	3.1	9
457	A Multicatalytic Approach to the Hydroaminomethylation of αâ€Olefins. Angewandte Chemie, 2019, 131, 3406-3410.	2.0	9
458	Palladium-Catalyzed Oxidative Dehydrosilylation for Contra-Thermodynamic Olefin Isomerization. ACS Catalysis, 2020, 10, 8736-8741.	11.2	9
459	Site Selective Chlorination of C(sp ³)â^'H Bonds Suitable for Lateâ€Stage Functionalization. Angewandte Chemie, 2021, 133, 8357-8364.	2.0	9
460	A Chiral Nitrogen Ligand for Enantioselective, Iridium atalyzed Silylation of Aromatic Câ^'H Bonds. Angewandte Chemie, 2017, 129, 1112-1116.	2.0	8
461	Polysilylether: A Degradable Polymer from Biorenewable Feedstocks. Angewandte Chemie, 2016, 128, 12051-12055.	2.0	7
462	Effects of ligands on the migratory insertion of alkenes into rhodium–oxygen bonds. Chemical Science, 2020, 11, 10449-10456.	7.4	7
463	Catalytic, Thermal, Regioselective Functionalization of Alkanes and Arenes with Borane Reagents. ACS Symposium Series, 2004, , 136-154.	0.5	6
464	Copperâ€Mediated Fluorination of Aryl Trisiloxanes with Nucleophilic Fluoride. Chemistry - A European Journal, 2020, 26, 1759-1762.	3.3	6
465	Oxalohydrazide Ligands for Copper atalyzed Câ^'O Coupling Reactions with High Turnover Numbers. Angewandte Chemie, 2021, 133, 8284-8292.	2.0	6
466	Copper atalyzed Dehydrogenative Amidation of Light Alkanes. Angewandte Chemie, 2021, 133, 18615-18619.	2.0	6
467	Siteâ€5elective Functionalization of (sp 3)Câ^'H Bonds Catalyzed by Artificial Metalloenzymes Containing an Iridiumâ€Porphyrin Cofactor. Angewandte Chemie, 2019, 131, 14092-14098.	2.0	5
468	Carbon(sp3)-nitrogen bond-forming reductive elimination from phosphine-ligated alkylpalladium(II) amide complexes: A DFT study. Tetrahedron, 2019, 75, 137-143.	1.9	5

#	Article	IF	CITATIONS
469	Crossâ€Coupling between Hydrazine and Aryl Halides with Hydroxide Base at Low Loadings of Palladium by Rateâ€Determining Deprotonation of Bound Hydrazine. Angewandte Chemie, 2021, 133, 403-412.	2.0	5
470	Transitionâ€Metalâ€Catalyzed Monofluoroalkylation: Strategies for the Synthesis of Alkyl Fluorides by C–C Bond Formation. Angewandte Chemie, 0, , .	2.0	5
471	gemâ€Difluoroallylation of Aryl Halides and Pseudo Halides with Difluoroallylboron Reagents in High Regioselectivity. Angewandte Chemie, 0, , .	2.0	4
472	Ringing the chains. Nature Chemistry, 2011, 3, 99-101.	13.6	2
473	Synthesis, Structure, and Reactivity of a Palladium Hydrazonato Complex: A New Type of Reductive Elimination Reaction To Form Câ^'N Bonds and Catalytic Arylation of Benzophenone Hydrazone. Angewandte Chemie - International Edition, 1998, 37, 2090-2093.	13.8	2
474	Directed Evolution of Artificial Metalloenzymes in Whole Cells. Angewandte Chemie, 2022, 134, e202110519.	2.0	2
475	Contra-thermodynamic Olefin Isomerization by Chain-Walking Hydroboration and Dehydroboration. Organic Letters, 2022, 24, 1005-1010.	4.6	2
476	Cover Picture: Pd-Catalyzed α-Arylation of Trimethylsilyl Enol Ethers with Aryl Bromides and Chlorides: A Synergistic Effect of Two Metal Fluorides as Additives (Angew. Chem. Int. Ed. 35/2006). Angewandte Chemie - International Edition, 2006, 45, 5717-5717.	13.8	0

Angewandte Chemie - International Edition, 2006, 45, 5717-5717.