Paul Watts

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4385978/publications.pdf Version: 2024-02-01

ΡΛΙΙΙ \λ/ΛΤΤς

#	Article	IF	CITATIONS
1	Rapid Multigram-Scale End-to-End Continuous-Flow Synthesis of Sulfonylurea Antidiabetes Drugs: Gliclazide, Chlorpropamide, and Tolbutamide. Synthesis, 2022, 54, 1365-1374.	2.3	2
2	Towards 4th industrial revolution efficient and sustainable continuous flow manufacturing of active pharmaceutical ingredients. Reaction Chemistry and Engineering, 2022, 7, 214-244.	3.7	27
3	Continuous flow synthesis of pharmaceuticals in Africa. Arkivoc, 2021, 2020, 24-39.	0.5	3
4	Continuous flow synthesis of L-menthyl glyoxylate monohydrate: an important intermediate in the manufacture of antiretrovirals. Arkivoc, 2021, 2020, 49-63.	0.5	0
5	Flow Chemistry Supporting Access to Drugs in Developing Countries. Topics in Medicinal Chemistry, 2021, , 391-419.	0.8	0
6	Continuous flow synthesis of xylidines via biphasic nitration of xylenes and nitro-reduction. Journal of Flow Chemistry, 2021, 11, 193-208.	1.9	5
7	Multistep Continuous Flow Synthesis of Stavudine. Journal of Organic Chemistry, 2021, 86, 13934-13942.	3.2	11
8	An overview of the synthetic routes to essential oral anti-diabetes drugs. Tetrahedron, 2021, 96, 132378.	1.9	15
9	Sustainable Chemistry and Engineering in Pharma. ACS Sustainable Chemistry and Engineering, 2021, 9, 13395-13398.	6.7	5
10	Total Synthesis of Glipizide and Glibenclamide in Continuous Flow. Chemistry - A European Journal, 2021, 27, 16028-16035.	3.3	1
11	3D printing and continuous flow chemistry technology to advance pharmaceutical manufacturing in developing countries. Arabian Journal of Chemistry, 2020, 13, 7886-7908.	4.9	22
12	The evolution of Tamiflu synthesis, 20 years on: Advent of enabling technologies the last piece of the puzzle?. Tetrahedron, 2020, 76, 131440.	1.9	16
13	Continuous-Flow Synthesis of (–)-Oseltamivir Phosphate (Tamiflu). Synlett, 2020, 31, 1925-1929.	1.8	9
14	Safe and highly efficient adaptation of potentially explosive azide chemistry involved in the synthesis of Tamiflu using continuous-flow technology. Beilstein Journal of Organic Chemistry, 2019, 15, 2577-2589.	2.2	17
15	Efficient continuous flow synthesis of ethyl shikimate: the first step in the synthesis of Tamiflu. Journal of Flow Chemistry, 2019, 9, 79-87.	1.9	7
16	Continuous flow chemistry: where are we now? Recent applications, challenges and limitations. Chemical Communications, 2018, 54, 13894-13928.	4.1	185
17	A study on the scale-up of acyl azide synthesis in various continuous flow reactors in homogeneous and biphasic systems. Journal of Flow Chemistry, 2018, 8, 69-79.	1.9	8
18	An Improved Synthesis of Lamivudine and Emtricitabine. ChemistrySelect, 2017, 2, 1102-1105.	1.5	13

PAUL WATTS

#	Article	IF	CITATIONS
19	Semi-continuous multi-step synthesis of lamivudine. Organic and Biomolecular Chemistry, 2017, 15, 3444-3454.	2.8	22
20	Flow processing as a tool for API production in developing economies. Journal of Flow Chemistry, 2017, 7, 146-150.	1.9	20
21	Synthesis of Amines, Carbamates and Amides by Multi‣tep Continuous Flow Synthesis. European Journal of Organic Chemistry, 2017, 2017, 6554-6565.	2.4	21
22	Synthesis of a key intermediate towards the preparation of efavirenz using <i>n</i> -butyllithium. Journal of Flow Chemistry, 2017, 7, 37-40.	1.9	8
23	The in situ generation and reactive quench of diazonium compounds in the synthesis of azo compounds in microreactors. Beilstein Journal of Organic Chemistry, 2016, 12, 1987-2004.	2.2	20
24	A facile optimization of diazotization and phase transfer catalyzed azo-coupling reactions in microreactors. Journal of Flow Chemistry, 2016, 6, 73-79.	1.9	12
25	Study on the Scale-Up of Phase-Transfer-Catalyzed Azo Coupling Reactions in Flow Reactors. Chemistry of Heterocyclic Compounds, 2016, 52, 943-947.	1.2	9
26	Synthesis routes to anti-HIV drugs. Tetrahedron, 2016, 72, 3389-3420.	1.9	23
27	Selective Direct Synthesis of Trialkoxysilanes in a Packed Bed Flow Tubular Reactor. ACS Sustainable Chemistry and Engineering, 2016, 4, 6237-6243.	6.7	16
28	Disproportionation of Triethoxysilane over Anion Exchange Resins. Catalysis Letters, 2016, 146, 1445-1448.	2.6	2
29	Micro Reactors, Flow Reactors and Continuous Flow Synthesis. Journal of Chemical Research, 2012, 36, 181-193.	1.3	47
30	Continuous flow reactors: a perspective. Green Chemistry, 2012, 14, 38-54.	9.0	548
31	Recent advances in micro reaction technology. Chemical Communications, 2011, 47, 6512.	4.1	241
32	Synthesis of substituted indoles using continuous flow micro reactors. Tetrahedron, 2010, 66, 3861-3865.	1.9	54
33	Chemical Synthesis in Microreactors. Methods in Molecular Biology, 2010, 583, 109-120.	0.9	4
34	Continuous-flow organic synthesis: a tool for the modern medicinal chemist. Future Medicinal Chemistry, 2009, 1, 1593-1612.	2.3	37
35	Deuterated isotope labelling of phenol derivatives within micro reactors. Microfluidics and Nanofluidics, 2008, 5, 595-602.	2.2	2
36	Continuous Flow Reactors, a Tool for the Modern Synthetic Chemist. European Journal of Organic Chemistry, 2008, 2008, 1655-1671.	2.4	286

PAUL WATTS

#	Article	IF	CITATIONS
37	Evaluation of the Heterogeneously Catalyzed Strecker Reaction Conducted Under Continuous Flow. European Journal of Organic Chemistry, 2008, 2008, 5597-5613.	2.4	43
38	An Integrated Microreactor for the Multicomponent Synthesis of α-Aminonitriles ¹ . Organic Process Research and Development, 2008, 12, 1001-1006.	2.7	39
39	Recent advances in synthetic micro reaction technology. Chemical Communications, 2007, , 443-467.	4.1	339
40	Micro reactors: a new tool for the synthetic chemist. Organic and Biomolecular Chemistry, 2007, 5, 727.	2.8	74
41	Electrosynthesis of phenyl-2-propanone derivatives from benzyl bromides and acetic anhydride in an unsupported micro-flow cell electrolysis process. Green Chemistry, 2007, 9, 20-22.	9.0	22
42	Expedient synthesis of deuterium-labelled amides within micro-reactors. Journal of Labelled Compounds and Radiopharmaceuticals, 2007, 50, 189-196.	1.0	15
43	Separation of [¹⁸ F]fluoride ion from protonâ€rradiated [¹⁸ O]water within an EOFâ€driven microâ€reactor powered by the Capilix Capellaâ"¢ platform. Journal of Labelled Compounds and Radiopharmaceuticals, 2007, 50, 597-599.	1.0	7
44	Towards paired and coupled electrode reactions for clean organic microreactor electrosyntheses. Journal of Applied Electrochemistry, 2006, 36, 617-634.	2.9	161
45	Microreactors for drug discovery: the importance of integrating chemical synthesis with real-time analytical detection. Analytical and Bioanalytical Chemistry, 2005, 382, 865-867.	3.7	14
46	The Application of Microreactors in Combinatorial Chemistry. QSAR and Combinatorial Science, 2005, 24, 701-711.	1.4	18
47	The application of micro reactors for organic synthesis. Chemical Society Reviews, 2005, 34, 235.	38.1	364
48	The Application of Microreactor Technology for the Synthesis of 1,2-Azoles. Organic Process Research and Development, 2004, 8, 28-32.	2.7	39
49	Solid-Supported Continuous Flow Synthesis in Microreactors Using Electroosmotic Flow. Organic Process Research and Development, 2004, 8, 942-944.	2.7	32
50	Continuous flow microreactors for drug discovery. Current Opinion in Drug Discovery & Development, 2004, 7, 807-12.	1.9	5
51	Continuous flow reactors for drug discovery. Drug Discovery Today, 2003, 8, 586-593.	6.4	69
52	Solution phase synthesis of esters within a micro reactor. Tetrahedron, 2003, 59, 10173-10179.	1.9	32
53	Microfluidic combinatorial chemistry. Current Opinion in Chemical Biology, 2003, 7, 380-387.	6.1	100
54	Green chemistry: synthesis in micro reactors. Green Chemistry, 2003, 5, 240-249.	9.0	174

PAUL WATTS

#	Article	IF	CITATIONS
55	Investigation of racemisation in peptide synthesis within a micro reactor. Lab on A Chip, 2002, 2, 141.	6.0	48
56	The application of micro reactors to synthetic chemistry. Chemical Communications, 2001, , 391-398.	4.1	202
57	The aldol reaction of silyl enol ethers within a micro reactor. Lab on A Chip, 2001, 1, 100.	6.0	80
58	The synthesis of peptides using micro reactors. Chemical Communications, 2001, , 990-991.	4.1	86