
MOH Cioffi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4385434/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mode II delamination of carbon-glass fiber/epoxy hybrid composite under fatigue loading. International Journal of Fatigue, 2022, 154, 106574.	2.8	10
2	The influence of carbon-glass/epoxy hybrid composite under mode I fatigue loading: Physical-based characterization. Composite Structures, 2022, 286, 115291.	3.1	2
3	Investigation of HVOF-sprayed WC- and NiCr-based coatings to improve corrosion and wear performance of high-strength steel. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2022, 44, 1.	0.8	4

4 Đ'Đ»Đ,ÑĐ¼2Đ,е Đ¼ĐµĐ¶Đ;Đ¾Đ2еÑ€Ñ...Đ¼2Đ¾ÑÑ,Đ¼2Đ¾Đ¹ аĐĐ³ĐµĐĐ,Đ, Đ² Đ³Đ,бÑ€Đ,ĐĐ¼2Đ¾Đ¼ ÃMĐ;Đ¾Đ€ÑĐ,ĐĐ¼2Đ

5	The Influence of Carbon/Glass/Epoxy Hybrid Interfacial Adhesion on the Mode II Delamination Fracture Toughness. Mechanics of Composite Materials, 2022, 58, 237-248.	0.9	3
6	Different Sequential Chemical Treatments Used to Obtain Bleached Cellulose from Orange Bagasse. Journal of Natural Fibers, 2022, 19, 12849-12861.	1.7	2
7	A review on selfâ€healing polymers and polymer composites for structural applications. Polymer Composites, 2022, 43, 7643-7668.	2.3	15
8	Porosity characterization and respective influence on short-beam strength of advanced composite processed by resin transfer molding and compression molding. Polymers and Polymer Composites, 2021, 29, 1353-1362.	1.0	7
9	Survey on chemical, physical, and thermal prediction behaviors for sequential chemical treatments used to obtain cellulose from Imperata Brasiliensis. Journal of Thermal Analysis and Calorimetry, 2021, 143, 73-85.	2.0	14
10	Sustainable application of recycled espresso coffee capsules: Natural composite development for a home composter product. Journal of Cleaner Production, 2021, 297, 126647.	4.6	12
11	Mode I and mode <scp>II</scp> delamination of carbon/glass/epoxy hybrid composite: A statisticsâ€based analysis. Polymer Composites, 2021, 42, 3857-3869.	2.3	8
12	Influence of void content and morphology on the creep behavior on glass/epoxy composites. Composites Communications, 2021, 25, 100712.	3.3	16
13	The relation of porosity and creep behavior of glass fiber/epoxy composite: Design of experiments approach. Polymer Composites, 2021, 42, 5869-5879.	2.3	3
14	Effect of chemical treatment of pineapple crown fiber in the production, chemical composition, crystalline structure, thermal stability and thermal degradation kinetic properties of cellulosic materials. Carbohydrate Research, 2021, 499, 108227.	1.1	33
15	Effect of different stacking sequences on hybrid carbon/glass/epoxy composites laminate: Thermal, dynamic mechanical and long-term behavior. Journal of Composite Materials, 2020, 54, 731-743.	1.2	17
16	Residual modulus degradation model for woven fabric composite determined by impulse excitation technique. International Journal of Fatigue, 2020, 133, 105456.	2.8	4
17	Creep/recovery and stress-relaxation tests applied in a standardized carbon fiber/epoxy composite: Design of experiment approach. Journal of Strain Analysis for Engineering Design, 2020, 55, 109-117.	1.0	17
18	FEA simulation and experimental validation of mode I and II delamination at the carbon/glass/epoxy hybrid interface: Physical-based interpretation. Composites Communications, 2020, 22, 100532.	3.3	15

M O H CIOFFI

#	Article	IF	CITATIONS
19	Scrutinizing interlaminar fatigue loading cycle in composites using acoustic emission technique: Stress ratio influence on damage formation. Composites Part A: Applied Science and Manufacturing, 2020, 138, 106065.	3.8	6
20	The synergy effect of carbon/glass/epoxy hybrid laminate in Mode I delamination: A physical microfracture analysis. Engineering Fracture Mechanics, 2020, 239, 107295.	2.0	12
21	Obtaining cellulose nanocrystals from pineapple crown fibers by free-chlorite hydrolysis with sulfuric acid: physical, chemical and structural characterization. Cellulose, 2020, 27, 5745-5756.	2.4	48
22	Thermal characterization and lifetime prediction of the PHBV/nanocellulose biocomposites using different kinetic approaches. Cellulose, 2020, 27, 7503-7522.	2.4	10
23	Effect of stacking sequence and porosity on creep behavior of glass/epoxy and carbon/epoxy hybrid laminate composites. Composites Communications, 2020, 19, 210-219.	3.3	30
24	Porosity Characterization of Carbon Fiber/Epoxy Composite Using Hg Porosimetry and Other Techniques. Polymer Engineering and Science, 2020, 60, 841-849.	1.5	4
25	A fatigue life estimative method based on dynamic mechanical and fatigue analyses. International Journal of Fatigue, 2020, 138, 105723.	2.8	3
26	Three-dimensional porosity characterization in carbon/glass fiber epoxy hybrid composites. Composites Part A: Applied Science and Manufacturing, 2019, 125, 105555.	3.8	40
27	Permeability of untreated and atmospheric plasma treated coconut fiber mats. Materials Research Express, 2019, 6, 095323.	0.8	5
28	Increasing fatigue resistance of AISI 4340 steel by nitrogen plasma ion-implantation. Engineering Failure Analysis, 2019, 104, 490-499.	1.8	14
29	Hybridâ€permeability model evaluation through concepts of tortuosity and resistance rate: Properties of manufactured hybrid laminate. Polymer Engineering and Science, 2019, 59, 1215-1222.	1.5	14
30	Obtainment and characterization of nanocellulose from an unwoven industrial textile cotton waste: Effect of acid hydrolysis conditions. International Journal of Biological Macromolecules, 2019, 126, 496-506.	3.6	65
31	Mechanical behavior simulation: NCF/epoxy composite processed by RTM. Polymers and Polymer Composites, 2019, 27, 66-75.	1.0	11
32	Effect of different degradation types on properties of plastic waste obtained from espresso coffee capsules. Waste Management, 2019, 83, 123-130.	3.7	25
33	Plasma immersion ion implantation (PIII) influence on Ti-6Al-4V alloy: Frequency effect. International Journal of Fatigue, 2018, 109, 157-165.	2.8	19
34	Preparation of nanocellulose from Imperata brasiliensis grass using Taguchi method. Carbohydrate Polymers, 2018, 192, 337-346.	5.1	106
35	Hygrothermal Effect on Composites Under In-Plane Fatigue at Stress Ratios of R = â^'1 and R = 0 Analysis of Quasi-Isotropic Stitched Carbon Fibers. Journal of Materials Engineering and Performance, 2018, 27, 5964-5972.	0.1: An 1.2	8
36	On the creep behavior of carbon/epoxy non-crimp fabric composites. Materials Research, 2018, 21, .	0.6	25

M O H CIOFFI

#	Article	IF	CITATIONS
37	Effect of fiber chemical treatment of nonwoven coconut fiber/epoxy composites adhesion obtained by RTM process. Polymer Composites, 2017, 38, 2518-2527.	2.3	10
38	The Role of Stitch Yarn on the Delamination Resistance in Non-crimp Fabric: Chemical and Physical Interpretation. Journal of Materials Engineering and Performance, 2017, 26, 978-986.	1.2	19
39	Effect of acid hydrolysis conditions on the degradation properties of cellulose from Imperata brasiliensis fibers. Procedia Engineering, 2017, 200, 244-251.	1.2	14
40	Effects of plasma treatment on the sorption properties of coconut fibers. Procedia Engineering, 2017, 200, 357-364.	1.2	14
41	Characterization of a New Lignocellulosic Fiber from Brazil: <i>Imperata brasiliensis</i> (Brazilian) Tj ETQq1 1 0.73	84314 rgBT 1.7	/Overlock 34
42	Replacement of metallic parts for polymer composite materials in motorcycle oil pumps. Journal of Reinforced Plastics and Composites, 2017, 36, 149-160.	1.6	12
43	Cellulose fiber-reinforced high-density polyethylene composites—Mechanical and thermal properties. Journal of Composite Materials, 2017, 51, 1807-1815.	1.2	32
44	Plasma immersion ion implantation on 15-5PH stainless steel: influence on fatigue strength and wear resistance. Journal of Physics: Conference Series, 2017, 843, 012023.	0.3	7
45	PHBV/cellulose nanofibrils composites obtained by solution casting and electrospinning process. Revista Materia, 2017, 22, .	0.1	11
46	A novel hybrid linear–hyperbranched poly(butylene adipate) copolymer as an epoxy resin modifier with toughening effect. Polymer International, 2016, 65, 308-319.	1.6	13
47	Polyhydroxyalkanoates and Their Nanobiocomposites With Cellulose Nanocrystals. , 2016, , 261-285.		11
48	A brief discussion on (pure mode I) fatigue crack growth rate data in 5HS weave fabric composites: Evaluation of empirical relations. International Journal of Fatigue, 2016, 84, 97-103.	2.8	16
49	Análise Dinâmico-Mecânica de Materiais Compósitos Poliméricos. Scientia Cum Industria, 2016, 4, 48.	0.1	29
50	Comparison between Commercial and Synthesized Hyperbranched Polyesters Regarding Fracture Toughness of Epoxy Matrix. Applied Mechanics and Materials, 2015, 719-720, 110-113.	0.2	1
51	Fatigue Performance of AISI 4340 Steel Ni-Cr-B-Si-Fe HVOF Thermal Spray Coated. Procedia Engineering, 2015, 114, 606-612.	1.2	15
52	Vegetal fibers in polymeric composites: a review. Polimeros, 2015, 25, 9-22.	0.2	163
53	Applicability of standard delamination tests (double cantilever beam and end notch flexure) for 5HS fabric-reinforced composites in weft-dominated surface. Journal of Composite Materials, 2015, 49, 2557-2565.	1.2	9
54	The relationship between pure delamination modes I and II on the crack growth rate process in cracked lap shear specimen (CLS) of 5 harness satin composites. Composites Part A: Applied Science and Manufacturing, 2015, 78, 350-357.	3.8	6

M O H Cioffi

#	Article	IF	CITATIONS
55	Efficiency comparison of hyperbranched polymers as toughening agents for a one-part epoxy resin. Journal of Materials Research, 2015, 30, 869-878.	1.2	10
56	Analysis of curaua/glass hybrid interlayer laminates. Journal of Reinforced Plastics and Composites, 2014, 33, 472-478.	1.6	25
57	Sugarcane bagasse cellulose fibres and their hydrous niobium phosphate composites: synthesis and characterization by XPS, XRD and SEM. Cellulose, 2014, 21, 641-652.	2.4	55
58	Influência da Espessura nas Propriedades Mecânicas de Compósitos HÃbridos Interlaminares de Curauá / Vidro / Poliéster. Polimeros, 2014, 24, 184-189.	0.2	6
59	Effect of fiber surface on flexural strength in carbon fabric reinforced epoxy composites. Applied Surface Science, 2013, 274, 210-216.	3.1	66
60	Experimental RTM manufacturing analysis of carbon/epoxy composites for aerospace application. Materials Research, 2013, 16, 1175-1182.	0.6	19
61	Tricot stitched carbon fiber reinforced polymer composite laminates manufactured by resin transfer molding process: C-scan and flexural analysis. Journal of Composite Materials, 2013, 47, 1695-1703.	1.2	9
62	Characterization of High Density Polyethylene (HDPE) Reinforced with Banana Peel Fibers. BioResources, 2013, 8, .	0.5	19
63	Thermal and mechanical behaviour of sisal/phenolic composites. Composites Part B: Engineering, 2012, 43, 2843-2850.	5.9	66
64	Flexural behavior of Sisal/Castor oil-Based Polyurethane and Sisal/Phenolic Composites. Materials Research, 2012, 15, 191-197.	0.6	15
65	Análise do efeito higrotérmico no comportamento em fadiga de compósitos de PPS/fibras de carbono. Polimeros, 2012, 22, 7-12.	0.2	3
66	Preparação e caracterização de materiais hÃbridos celulose/NbOPO4.nH2O a partir de celulose branqueada de bagaço de cana-de-açúcar. Polimeros, 2012, 22, 88-95.	0.2	6
67	Correlation of microcrack fracture size with fatigue cycling on non-crimp fabric/RTM6 composite in the uniaxial fatigue test. Composites Part B: Engineering, 2012, 43, 2244-2248.	5.9	10
68	Cure kinetic of castor oil-based polyurethane. Journal of Applied Polymer Science, 2011, 122, 3168-3171.	1.3	9
69	Fatigue behavior of PVD coated Ti–6Al–4V alloy. International Journal of Fatigue, 2011, 33, 759-765.	2.8	81
70	Flexural Test On Recycled Polystyrene. Procedia Engineering, 2011, 10, 930-935.	1.2	12
71	Fatigue Strength of X45CrSi93 stainless steel applied as internal combustion engine valves. Procedia Engineering, 2011, 10, 1256-1261.	1.2	16
72	Mechanical behavior of natural fiber composites. Procedia Engineering, 2011, 10, 2022-2027.	1.2	81

M O H Cioffi

#	Article	IF	CITATIONS
73	Evaluation of stitched fabric composite processed by RTM in quasi-static test. Procedia Engineering, 2011, 10, 2603-2608.	1.2	3
74	Influence of voids on the flexural resistance of the NCF/RTM6 composites. Procedia Engineering, 2011, 10, 3220-3225.	1.2	14
75	Mechanical properties of HIPS/sugarcane bagasse fiber composites after accelerated weathering. Procedia Engineering, 2011, 10, 3246-3251.	1.2	39
76	Evaluation of WC-10Ni thermal spray coating with shot peening on the fatigue strength of AISI 4340 steel. Procedia Engineering, 2010, 2, 649-656.	1.2	31
77	Evaluation on fatigue strength of AISI 4340 steel aluminum coated by electroplating and IVD processes. Journal of Materials Science, 2010, 45, 6094-6100.	1.7	6
78	Evaluation of WC-10Ni thermal spraying coating by HVOF on the fatigue and corrosion AISI 4340 steel. Procedia Engineering, 2010, 2, 331-340.	1.2	23
79	Carbon fiber non-crimp multi-axial reinforcement and epoxy mono-component system composite: Fatigue behavior. Procedia Engineering, 2010, 2, 341-348.	1.2	5
80	Fatigue in AISI 4340 steel thermal spray coating by HVOF for aeronautic application. Procedia Engineering, 2010, 2, 1617-1623.	1.2	23
81	Fatigue fracture behavior of Ti-6Al-4V PVD coated. Procedia Engineering, 2010, 2, 1859-1864.	1.2	25
82	Quantitative microscopy characterization of hydrous niobium phosphate into bleached cellulose. Micron, 2010, 41, 402-411.	1.1	2
83	Fractography analysis and fatigue strength of carbon fiber/RTM6 laminates. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 3609-3614.	2.6	12
84	An investigation on sliding wear behavior of PVD coatings. Tribology International, 2010, 43, 2196-2202.	3.0	30
85	Image analysis of modified cellulose fibers from sugarcane bagasse by zirconium oxychloride. Carbohydrate Research, 2010, 345, 1865-1871.	1.1	21
86	Effect of WC–10%Co–4%Cr coating on the Ti–6Al–4V alloy fatigue strength. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 507, 29-36.	2.6	51
87	Improvement in the fatigue strength of chromium electroplated AISI 4340 steel by shot peening. Fatigue and Fracture of Engineering Materials and Structures, 2009, 32, 97-104.	1.7	28
88	Preparation and properties of HDPE/sugarcane bagasse cellulose composites obtained for thermokinetic mixer. Carbohydrate Polymers, 2009, 75, 317-321.	5.1	110
89	Sugarcane bagasse cellulose/HDPE composites obtained by extrusion. Composites Science and Technology, 2009, 69, 214-219.	3.8	159
90	Fatigue strength of HVOF sprayed Cr3C2–25NiCr and WC-10Ni on AISI 4340 steel. Surface and Coatings Technology, 2008, 203, 191-198.	2.2	52

M O H Cioffi

#	Article	IF	CITATIONS
91	Coating residual stress effects on fatigue performance of 7050-T7451 aluminum alloy. Surface and Coatings Technology, 2007, 201, 9448-9455.	2.2	98
92	Effect of electroless nickel interlayer on the fatigue strength of chromium electroplated AISI 4340 steel. International Journal of Fatigue, 2007, 29, 695-704.	2.8	48
93	Residual stress influence on fatigue lifetimes of electroplated AISI 4340 high strength steel. Fatigue and Fracture of Engineering Materials and Structures, 2007, 30, 1084-1097.	1.7	4
94	Evaluation of shot peening on the fatigue strength of anodized Ti-6Al-4V alloy. Materials Research, 2006, 9, 107-109.	0.6	22
95	Politics, desire and memory in the construction of landscape in the Argentine pampas. Journal of Visual Art Practice, 2006, 5, 107-119.	0.3	2
96	Evaluation of WC–17Co and WC–10Co–4Cr thermal spray coatings by HVOF on the fatigue and corrosion strength of AISI 4340 steel. Surface and Coatings Technology, 2005, 190, 155-164.	2.2	113
97	Effects of Electroplated Zinc-Nickel Alloy Coatings on the Fatigue Strength of AISI 4340 High-Strength Steel. Journal of Materials Engineering and Performance, 2005, 14, 249-257.	1.2	14
98	Effect of cold plasma treatment on mechanical properties of PET/PMMA composites. Composites Part A: Applied Science and Manufacturing, 2005, 36, 615-623.	3.8	47
99	Mechanical Strength of PET Fibers Treated in Cold Plasma and Thermal Exposed. Journal of Materials Engineering and Performance, 2003, 12, 279-287.	1.2	6
100	Surface energy increase of oxygen-plasma-treated PET. Materials Characterization, 2003, 50, 209-215.	1.9	65
101	A Dynamic Model Accounting for Oscillating Behavior in Reactive Extrusion. International Polymer Processing, 2003, 18, 277-284.	0.3	7
102	Rheokinetics of linear polymerization. A literature review. Polymer Engineering and Science, 2002, 42, 2383-2392.	1.5	40
103	Tensile Strength of Radio Frequency Cold Plasma Treated PET Fibers - Part I: Influence of Environmen and Treatment Time. Journal of Materials Engineering and Performance, 2002, 11, 659-666.	1.2	10
104	Instabilities in free radical polymerization. Nonlinear Analysis: Theory, Methods & Applications, 2001, 47, 897-906.	0.6	4
105	A Dynamic Model for Multiple Steady States in Reactive Extrusion. International Polymer Processing, 2001, 16, 263-271.	0.3	15
106	Fatigue Crack Growth Rate in Mode I of a Carbon Fiber 5HS Weave Composite Laminate Processed via RTM. Advanced Materials Research, 0, 891-892, 172-177.	0.3	4
107	Influence of Shot Peening on the Fatigue Strength of Custom 465 Stainless Steel for Aeronautic Application. Advanced Materials Research, 0, 891-892, 668-673.	0.3	3
108	Influence of HVOF Coating on the Fatigue Strength of 15-5 PH Stainless Steel. Advanced Materials Research, 0, 891-892, 843-847.	0.3	1

#	Article	IF	CITATIONS
109	Thermal Analysis of Sisal/Epoxy Composite Processed by RTM. Applied Mechanics and Materials, 0, 719-720, 50-54.	0.2	4
110	Comparison of Glass Transition Temperature Values of Composite Polymer Obtained by TMA and DSC. Applied Mechanics and Materials, 0, 719-720, 91-95.	0.2	2