Jinxian Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4384524/publications.pdf Version: 2024-02-01

IINYIAN WANC

#	Article	IF	CITATIONS
1	Decorating rare-earth fluoride upconversion nanoparticles on AuNRs@Ag core–shell structure for NIR light-mediated photothermal therapy and bioimaging. Journal of Rare Earths, 2022, 40, 193-200.	2.5	7
2	Eu3+ ions grafted polyacrylonitrile nanofibers possessing enhanced fluorescence performance by introducing benzoic acid as assistant ligand. Journal of Rare Earths, 2022, 40, 421-427.	2.5	2
3	Conjugative electrospinning towards Janus-type nanofibers array membrane concurrently displaying dual-functionality of improved red luminescence and tuneable superparamagnetism. Journal of Materials Science: Materials in Electronics, 2022, 33, 4438-4449.	1.1	10
4	Two steps synthesis of plum-shaped C@Ni/MnO nanofiber heterostructures for trapping and catalyzing polysulfides in lithium-sulfur batteries. Journal of Colloid and Interface Science, 2022, 613, 15-22.	5.0	4
5	NiCo2O4@PPy concurrently as cathode host material and interlayer for high-rate and long-cycle lithium sulfur batteries. Ceramics International, 2022, 48, 22287-22296.	2.3	16
6	A novel K3WO2F5·2H2O:Mn4+ phosphor with excellent hydrophobic stability by coating paraffin wax for the application of WLEDs. Journal of Alloys and Compounds, 2022, 918, 165522.	2.8	8
7	Flexible solar absorber using hydrophile/hydrophobe amphipathic Janus nanofiber as building unit for efficient vapor generation. Separation and Purification Technology, 2022, 297, 121526.	3.9	11
8	Electrospun light stimulus response-enhanced anisotropic conductive Janus membrane with up/down-conversion luminescence. Materials Chemistry Frontiers, 2022, 6, 2219-2232.	3.2	10
9	Enhanced fluorescence achieved by introducing benzoic acid as coligand onto Tb3+ grafted PAN nanofibers. Optical Materials, 2021, 111, 110619.	1.7	5
10	A neoteric approach to achieve CaF2:Eu2+/3+ one-dimensional nanostructures with direct white light emission and color-tuned photoluminescence. Journal of Alloys and Compounds, 2021, 851, 156784.	2.8	10
11	The strategies of boosting the performance of highly reversible zinc anodes in zinc-ion batteries: recent progress and future perspectives. Sustainable Energy and Fuels, 2021, 5, 332-350.	2.5	29
12	Flexible Nanobelts Array Film with Lightâ€Controllable Electrically Conductive Anisotropy. Macromolecular Materials and Engineering, 2021, 306, 2100052.	1.7	3
13	Flexible microfiber array film possessing light-activated conductive anisotropy. Materials Chemistry and Physics, 2021, 267, 124717.	2.0	3
14	Enhanced UV–Vis–NIR composite photocatalysis of NaBiF4:Yb3+, Tm3+ upconversion nanoparticles loaded on Bi2WO6 microspheres. Journal of Solid State Chemistry, 2021, 300, 122248.	1.4	12
15	Porous Mo2C nanofibers with high conductivity as an efficient sulfur host for highly-stable lithium-sulfur batteries. Journal of Physics and Chemistry of Solids, 2021, 156, 110193.	1.9	5
16	Green synthesis, luminescent properties and application for WLED of flower-like K2LiAlF6:Mn4+ phosphor. Optical Materials, 2021, 119, 111392.	1.7	14
17	Electrospun polyfunctional switch-typed anisotropic photoconductive film endued with superparamagnetic-fluorescent performances. Applied Materials Today, 2021, 24, 101086.	2.3	3
18	White light emission and energy transfer mechanism of LaOCl:Tb3+/Sm3+ with 3D umbrella-like structure. Journal of Luminescence, 2021, 238, 118277.	1.5	3

#	Article	IF	CITATIONS
19	Non-metal group doped g-C3N4 combining with BiF3:Yb3+, Er3+ upconversion nanoparticles for photocatalysis in UV–Vis–NIR region. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 627, 127180.	2.3	12
20	Novel photosensitive dual-anisotropic conductive Janus film endued with magnetic-luminescent properties and derivative 3D structures. Journal of Colloid and Interface Science, 2021, 601, 899-914.	5.0	8
21	Tricolor flag-shaped nanobelt array and derivant 3D structures display concurrent conductive anisotropy, up-conversion fluorescence and magnetism. Materials and Design, 2021, 211, 110121.	3.3	4
22	Twoâ€step solvothermal synthesis of high capacity LiNi 0 . 8 Co 0 . 15 Al 0 . 05 O 2 cathode for Liâ€ion batteries. Journal of the Chinese Chemical Society, 2021, 68, 849-857.	0.8	2
23	Suppressed energy transfer between different rare earth ions to obtain enhanced and tuned fluorescence by using Janus nanofibers. Journal of Materials Chemistry C, 2021, 9, 7615-7621.	2.7	12
24	Moisture-resistant Nb-based fluoride K ₂ NbF ₇ :Mn ⁴⁺ and oxyfluoride phosphor K ₃ (NbOF ₅)(HF ₂):Mn ⁴⁺ : synthesis, improved luminescence performance and application in warm white LEDs. Dalton Transactions, 2021, 50, 17290-17300.	1.6	17
25	Co-precipitation synthesis, luminescent properties and application in warm WLEDs of Na3GaF6:Mn4+ red phosphor. Journal of Luminescence, 2020, 219, 116960.	1.5	19
26	One-step hydrothermal synthesis of Ni-Co sulfide on Ni foam as a binder-free electrode for lithium-sulfur batteries. Journal of Colloid and Interface Science, 2020, 565, 378-387.	5.0	31
27	Green route synthesis and optimized luminescence of K2SiF6:Mn4+ red phosphor for warm WLEDs. Optical Materials, 2020, 99, 109500.	1.7	12
28	Electrospun TiO2//SnO2 Janus nanofibers and its application in ethanol sensing. Materials Letters, 2020, 262, 127070.	1.3	33
29	Luminescence properties and energy transfer of Tb3+, Eu3+ co-doped YTaO4 phosphors obtained via sol–gel combustion process. Journal of Materials Science: Materials in Electronics, 2020, 31, 13688-13695.	1.1	10
30	2D Dual Anisotropic Conductive Janus Nanostrips Array Pellicle and Derivative 3D Janusâ€structural Pipe Concurrently Endowed with Magnetism and Redâ€green Twoâ€colored Fluorescence. ChemNanoMat, 2020, 6, 1876-1892.	1.5	5
31	Synthesis and Ethanol Sensing Properties of SnO2 Nanoparticles in SnO2 Nanotubes Composite. Russian Journal of Physical Chemistry A, 2020, 94, 2306-2311.	0.1	6
32	Local structure modulation of Mn ⁴⁺ -doped Na ₂ Si _{1â^'y} Ge _y F ₆ red phosphors for enhancement of emission intensity, moisture resistance, thermal stability and application in warm pc-WLEDs. Dalton Transactions, 2020, 49, 13805-13817.	1.6	36
33	Hydrothermal synthesis of rodâ€like CoMoO 4 and its excellent properties for the anode of lithiumâ€ion batteries. Journal of the Chinese Chemical Society, 2020, 67, 2012-2018.	0.8	3
34	2D Janus membrane and derivative 3D dual-wall Janus shaped tube affording dual aeolotropic conduction, up/down conversion luminescence and superparamagnetism. Materials Today Communications, 2020, 24, 101235.	0.9	3
35	Preparation of hierarchical LiNi x Co y Mn z O 2 from solvothermal [Ni x Co y Mn z](OH) 2 via regulating the ratio of Ni, Co, and Mn and its excellent properties for lithiumâ€ion battery ca. Journal of the Chinese Chemical Society, 2020, 67, 2062-2070.	0.8	5
36	Electrospinning-based construction of porous Mn ₃ O ₄ /CNFs as anodes for high-performance lithium-ion batteries. New Journal of Chemistry, 2020, 44, 3888-3895.	1.4	6

#	Article	IF	CITATIONS
37	NaGdF4:Ln3+ (Ln=Dy, Sm) phosphors: Luminescence, energy transfer, tunable color and magnetic properties. Journal of Luminescence, 2020, 222, 117155.	1.5	19
38	Multiple anisotropic conductions, up/down conversion luminescence and magnetism assembled into 2D step-like Janus array film. Journal Physics D: Applied Physics, 2020, 53, 145301.	1.3	2
39	Construction, energy transfer, tunable multicolor and luminescence enhancement of YF3:RE3+(RE=Eu,) Tj ETQq	1	14 rgBT /Ove
40	Green route, room-temperature synthesis and luminescence properties of a non-rare-earth doping Zn2+ based narrow-band red phosphor for WLEDs. Journal of Luminescence, 2019, 216, 116695.	1.5	15
41	Synthesis and multicolor luminescence of Tb3+ and Sm3+ co-doped LiGd(MoO4)2 phosphor. Journal of Materials Science: Materials in Electronics, 2019, 30, 16376-16383.	1.1	3
42	Utilizing modules of different functions to construct a Janus-type membrane and derivative 3D Janus-type tube displaying synchronous trifunction of conductive aeolotropism, magnetism and luminescence. Nanotechnology, 2019, 30, 435602.	1.3	7
43	Modularization design philosophy for multifunctional materials: a case study of a Janus film affording concurrent electrically conductive anisotropic-magnetic-fluorescent multifunctionality. Journal of Materials Chemistry C, 2019, 7, 9075-9086.	2.7	27
44	Construction of LiMn2O4 microcubes and spheres via the control of the (104) crystal planes of MnCO3 for high rate Li-ions batteries. RSC Advances, 2019, 9, 21009-21017.	1.7	15
45	A versatile nitrogen-doped carbon coating strategy to improve the electrochemical performance of LiFePO4 cathodes for lithium-ion batteries. Journal of Alloys and Compounds, 2019, 810, 151889.	2.8	20
46	Novel polygonal structure Mn ⁴⁺ activated In ³⁺ -based Elpasolite-type hexafluorides red phosphor for warm white light-emitting diodes (WLEDs). Dalton Transactions, 2019, 48, 1376-1385.	1.6	26
47	Janus nanofiber array pellicle: facile conjugate electrospinning construction, structure and bifunctionality of enhanced green fluorescence and adjustable magnetism. RSC Advances, 2019, 9, 206-214.	1.7	18
48	Multifunctional Ag@NaGdF4:Yb3+, Er3+ core-shell nanocomposites for dual-mode imaging and photothermal therapy. Journal of Luminescence, 2019, 209, 357-364.	1.5	17
49	A Novel Strategy to Fabricate CuS, Cu7.2S4, and Cu2–ÂxSe Nanofibers via Inheriting the Morphology of Electrospun CuO Nanofibers. Russian Journal of Physical Chemistry A, 2019, 93, 730-735.	0.1	2
50	Electrochemical Characteristics of Li4Ti5O12/Ag Composite Nanobelts Prepared via Electrospinning. Russian Journal of Physical Chemistry A, 2019, 93, 144-150.	0.1	6
51	Assembling 1D and Janus Nanobelts into 2D Aeolotropic Conductive Janus Membranes and 3D Doubleâ€Walled Janus Tubes. ChemNanoMat, 2019, 5, 820-830.	1.5	11
52	3D nitrogen-doped hierarchical porous carbon framework for protecting sulfur cathode in lithium–sulfur batteries. New Journal of Chemistry, 2019, 43, 9641-9651.	1.4	22
53	Extremely sensitive and accurate H ₂ S sensor at room temperature fabricated with In-doped Co ₃ O ₄ porous nanosheets. Dalton Transactions, 2019, 48, 7720-7727.	1.6	25
54	Flexible sandwich-shaped composite film with simultaneous double electrically conductive anisotropy, magnetism and dual-color fluorescence. New Journal of Chemistry, 2019, 43, 7984-7996.	1.4	8

#	Article	IF	CITATIONS
55	High pairing rate Janus-structured microfibers and array: high-efficiency conjugate electrospinning fabrication, structure analysis and co-instantaneous multifunctionality of anisotropic conduction, magnetism and enhanced red fluorescence. RSC Advances, 2019, 9, 10679-10692.	1.7	17
56	Preparation of Janus microfibers with magnetic and fluorescence functionality via conjugate electro-spinning. Materials and Design, 2019, 170, 107701.	3.3	39
57	A neoteric sandwich-configurational composite film offering synchronous conductive aeolotropy, superparamagnetism and dual-color fluorescence. Nanoscale Advances, 2019, 1, 1497-1509.	2.2	7
58	Anisotropic Conductive Membrane with Superparamagnetism and Color-Tunable Luminescence. Russian Journal of Physical Chemistry A, 2019, 93, 2444-2451.	0.1	4
59	Room-temperature synthesis, optimized photoluminescence and warm-white LED application of a highly efficient non-rare-earth red phosphor. Journal of Alloys and Compounds, 2019, 775, 1365-1375.	2.8	28
60	Novel sandwich-structured composite pellicle displays high and tuned electrically conductive anisotropy, magnetism and photoluminescence. Chemical Engineering Journal, 2019, 361, 713-724.	6.6	34
61	Employing novel Janus nanobelts to achieve anisotropic conductive array pellicle functionalized by superparamagnetism and green fluorescence. Journal of Materials Science: Materials in Electronics, 2019, 30, 4219-4230.	1.1	1
62	Conjugate Electrospinning Construction of Microyarns with Synchronous Color-Tuned Photoluminescence and Tunable Electrical Conductivity. Journal of Electronic Materials, 2019, 48, 1511-1521.	1.0	3
63	Multifunctional β-NaGdF4: Ln3+ (Ln=Yb/Er/Eu) phosphors synthesized by l-arginine assisted hydrothermal method and their multicolor tunable luminescence. Materials Research Bulletin, 2019, 110, 141-148.	2.7	20
64	Investigating efficient energy transfer in novel strategy-obtained Gd2O2S:Dy3+, Eu3+ nanofibers endowed with white emitting and magnetic dual-functionality. Journal of Luminescence, 2019, 206, 509-517.	1.5	25
65	Dandelion Derived Nitrogen-Doped Hollow Carbon Host for Encapsulating Sulfur in Lithium Sulfur Battery. ACS Sustainable Chemistry and Engineering, 2019, 7, 3042-3051.	3.2	71
66	Electrospinning assembly of 1D peculiar Janus nanofiber into 2D anisotropic electrically conductive array membrane synchronously endued with tuned superparamagnetism and color-tunable luminescence. Journal of Materials Science: Materials in Electronics, 2018, 29, 10284-10300.	1.1	11
67	Enhancement of electrochemical properties of niobiumâ€doped LiFePO ₄ /C synthesized by sol–gel method. Journal of the Chinese Chemical Society, 2018, 65, 977-981.	0.8	7
68	Peculiarly Structured Janus Nanofibers Display Synchronous and Tuned Trifunctionality of Enhanced Luminescence, Electrical Conduction, and Superparamagnetism. ChemPlusChem, 2018, 83, 108-116.	1.3	10
69	Au-doped Li _{1.2} Ni _{0.7} Co _{0.1} Mn _{0.2} O ₂ electrospun nanofibers: synthesis and enhanced capacity retention performance for lithium-ion batteries. RSC Advances, 2018, 8, 4112-4118.	1.7	12
70	Flexible special-structured Janus nanofiber synchronously endued with tunable trifunctionality of enhanced photoluminescence, electrical conductivity and superparamagnetism. Journal of Materials Science: Materials in Electronics, 2018, 29, 7119-7129.	1.1	13
71	Realizing white light emitting in single phased LaOCl based on energy transfer from Tm3+ to Eu3+. Ceramics International, 2018, 44, 6754-6761.	2.3	9
72	A novel and facile approach to obtain NiO nanowire-in-nanotube structured nanofibers with enhanced photocatalysis. RSC Advances, 2018, 8, 11051-11060.	1.7	20

#	Article	IF	CITATIONS
73	Impact of CTAB on morphology and electrochemical performance of MoS2 nanoflowers with improved lithium storage properties. Journal of Materials Science: Materials in Electronics, 2018, 29, 3631-3639.	1.1	13
74	Room-temperature synthesis, controllable morphology and optical characteristics of narrow-band red phosphor K ₂ LiGaF ₆ :Mn ⁴⁺ . CrystEngComm, 2018, 20, 2183-2192.	1.3	18
75	Integrating photoluminescence, magnetism and thermal conversion for potential photothermal therapy and dual-modal bioimaging. Journal of Colloid and Interface Science, 2018, 510, 292-301.	5.0	25
76	Conjugate electrospinning-fabricated nanofiber yarns simultaneously endowed with bifunctionality of magnetism and enhanced fluorescence. Journal of Materials Science, 2018, 53, 2290-2302.	1.7	27
77	Assembling exceptionally-structured Janus nanoribbons into a highly anisotropic electrically conductive array film that exhibits red fluorescence and superparamagnetism. New Journal of Chemistry, 2018, 42, 18708-18716.	1.4	12
78	Controllable synthesis of nanostructured ZnCo ₂ O ₄ as high-performance anode materials for lithium-ion batteries. RSC Advances, 2018, 8, 39377-39383.	1.7	9
79	Electrospinning Construction of Flexible Composite Nanoribbons with Color-Tunable Fluorescence. Russian Journal of Physical Chemistry A, 2018, 92, 2257-2264.	0.1	2
80	Synergistic stabilizing lithium sulfur battery via nanocoating polypyrrole on cobalt sulfide nanobox. Journal of Power Sources, 2018, 405, 51-60.	4.0	45
81	Using special Janus nanobelt as constitutional unit to construct anisotropic conductive array membrane for concurrently affording color-tunable luminescence and superparamagnetism. RSC Advances, 2018, 8, 31608-31617.	1.7	16
82	Structure, Morphology, and Composition of Mn3N2/MnO/C Composite Anode Materials for Li-Ion Batteries. Russian Journal of Physical Chemistry A, 2018, 92, 1823-1829.	0.1	3
83	Rationally designed hierarchical porous CNFs/Co3O4 nanofiber-based anode for realizing high lithium ion storage. RSC Advances, 2018, 8, 30794-30801.	1.7	16
84	High performance Co3O4/Li2TiO3 composite hollow nanofibers as anode material for Li-ion batteries. Journal of Materials Science: Materials in Electronics, 2018, 29, 14222-14231.	1.1	3
85	Multifunctional PVP-Ba2GdF7:Yb3+, Ho3+ coated on Ag nanospheres for bioimaging and tumor photothermal therapy. Applied Surface Science, 2018, 458, 931-939.	3.1	22
86	Controlled Morphology, Improved Photoluminescent Properties, and Application of an Efficient Non-rare Earth Deep Red-Emitting Phosphor. Inorganic Chemistry, 2018, 57, 9892-9901.	1.9	57
87	Facile synthesis of Fe3O4/NiFe2O4 nanosheets with enhanced Lithium-ion storage by one-step chemical dealloying. Journal of Materials Science, 2018, 53, 15631-15642.	1.7	27
88	Facile synthesis of three-dimensional hierarchical NiO microflowers for efficient room temperature H2S gas sensor. Journal of Materials Science: Materials in Electronics, 2018, 29, 4624-4631.	1.1	28
89	Novel double anisotropic conductive flexible composite film endued with improved luminescence. RSC Advances, 2018, 8, 22887-22896.	1.7	13
90	In situ synthesis of homogeneous Ce ₂ S ₃ /MoS ₂ composites and their electrochemical performance for lithium ion batteries. RSC Advances, 2017, 7, 6309-6314.	1.7	7

#	Article	IF	CITATIONS
91	Eu 3+ /Tb 3+ doped cubic BaGdF 5 multifunctional nanophosphors: Multicolor tunable luminescence, energy transfer and magnetic properties. Journal of Luminescence, 2017, 186, 6-15.	1.5	29
92	A novel strategy to achieve NaGdF ₄ :Eu ³⁺ nanofibers with colorâ€ŧailorable luminescence and paramagnetic performance. Journal of the American Ceramic Society, 2017, 100, 2034-2044.	1.9	16
93	Electrospun Li4Ti5O12/Li2TiO3 composite nanofibers for enhanced high-rate lithium ion batteries. Journal of Solid State Electrochemistry, 2017, 21, 2779-2790.	1.2	22
94	Dual-mode blue emission, enhanced up-conversion luminescence and paramagnetic properties of ytterbium and thulium-doped Ba 2 GdF 7 multifunctional nanophosphors. Journal of Colloid and Interface Science, 2017, 501, 215-221.	5.0	14
95	Assembly of 1D nanofibers into a 2D bi-layered composite nanofibrous film with different functionalities at the two layers via layer-by-layer electrospinning. Physical Chemistry Chemical Physics, 2017, 19, 118-126.	1.3	9
96	An In ₂ O ₃ nanorod-decorated reduced graphene oxide composite as a high-response NO _x gas sensor at room temperature. New Journal of Chemistry, 2017, 41, 7517-7523.	1.4	26
97	Fabrication of Ce2S3/MoS2 composites via recrystallization-sulfurization method and their improved electrochemical performance for lithium-ion batteries. Journal of Materials Science: Materials in Electronics, 2017, 28, 12297-12305.	1.1	5
98	Electrospinning preparation and photoluminescence properties of Y3Al5O12:Ce3+, Tb3+ nanobelts. Journal of Materials Science: Materials in Electronics, 2017, 28, 4498-4505.	1.1	2
99	Electrospun Li3V2(PO4)3Nanobelts: Synthesis and Electrochemical Properties as Cathode Materials of Lithium-Ion Batteries. Journal of the Chinese Chemical Society, 2017, 64, 557-564.	0.8	5
100	Hydrothermal synthesis, down-/enhanced up-converting, color tuning luminescence, energy transfer and paramagnetic properties of Ln ³⁺ (Ln = Eu/Dy, Yb/Ho)-doped Ba ₂ GdF ₇ multifunctional nanophosphors. New Journal of Chemistry, 2017, 41, 1609-1617.	1.4	18
101	High electrochemical performance of nanoporous Fe3O4/CuO/Cu composites synthesized by dealloying Al-Cu-Fe quasicrystal. Journal of Alloys and Compounds, 2017, 729, 360-369.	2.8	21
102	Emerging La2O2CN2 matrix with controllable 3D morphology for photoluminescence applications. CrystEngComm, 2017, 19, 6498-6505.	1.3	5
103	Hydrothermal synthesis of narrow-band red emitting K ₂ NaAlF ₆ :Mn ⁴⁺ phosphor for warm-white LED applications. RSC Advances, 2017, 7, 45834-45842.	1.7	33
104	Dual-mode blue emission, paramagnetic properties of Yb3+–Tm3+ co-doped GdOCl difunctional nanostructures. Journal of Materials Science: Materials in Electronics, 2017, 28, 19038-19050.	1.1	3
105	Novel nanofiber yarns synchronously endued with tri-functional performance of superparamagnetism, electrical conductivity and enhanced fluorescence prepared by conjugate electrospinning. RSC Advances, 2017, 7, 48702-48711.	1.7	16
106	Assembly of 1D coaxial nanoribbons into 2D multicolor luminescence array membrane endowed with tunable anisotropic electrical conductivity and magnetism via electrospinning. RSC Advances, 2017, 7, 32850-32860.	1.7	10
107	Highly active and porous single-crystal In ₂ O ₃ nanosheet for NO _x gas sensor with excellent response at room temperature. RSC Advances, 2017, 7, 33419-33425.	1.7	39
108	La2O2CN2:Yb3+/Tm3+ nanofibers and nanobelts: novel fabrication technique, structure and upconversion luminescence. Journal of Materials Science: Materials in Electronics, 2017, 28, 16282-16291.	1.1	2

#	Article	IF	CITATIONS
109	A potential single-component white-light-emitting phosphor CaMoO4:La3+,Dy3+: hydrothermal synthesis, luminescence properties and energy transfer. Journal of Materials Science: Materials in Electronics, 2017, 28, 16519-16526.	1.1	11
110	Novel flexible coaxial nanoribbons arrays to help achieve tuned and enhanced simultaneous multicolor luminescence–electricity–magnetism trifunctionality. Journal of Materials Science: Materials in Electronics, 2017, 28, 16762-16775.	1.1	1
111	Double anisotropic electrically conductive flexible Janus-typed membranes. Nanoscale, 2017, 9, 18918-18930.	2.8	59
112	An electrospun flexible Janus nanoribbon array endowed with simultaneously tuned trifunctionality of electrically conductive anisotropy, photoluminescence and magnetism. New Journal of Chemistry, 2017, 41, 13983-13992.	1.4	19
113	Hierarchical porous CoNi/CoO/NiO composites derived from dealloyed quasicrystals as advanced anodes for lithium-ion batteries. Scripta Materialia, 2017, 139, 30-33.	2.6	20
114	Nanostructured CoO/NiO/CoNi anodes with tunable morphology for high performance lithium-ion batteries. Dalton Transactions, 2017, 46, 11031-11036.	1.6	22
115	Novel synthetic strategy towards BaFCl and BaFCl:Eu2+ nanofibers with photoluminescence properties. Chemical Engineering Journal, 2017, 310, 91-101.	6.6	20
116	Bi2MoO6/RGO composite nanofibers: facile electrospinning fabrication, structure, and significantly improved photocatalytic water splitting activity. Journal of Materials Science: Materials in Electronics, 2017, 28, 543-552.	1,1	26
117	Dy 3+ and Eu 3+ Co-doped NaGdF 4 nanofibers endowed with bifunctionality of tunable multicolor luminescence and paramagnetic properties. Chemical Engineering Journal, 2017, 309, 230-239.	6.6	64
118	Synthesis, Characterization and Photocatalytic Performance of SnS Nanofibers and SnSe Nanofibers Derived from the Electrospinning-made SnO2 Nanofibers. Materials Research, 2017, 20, 1748-1755.	0.6	15
119	Single Flexible Nanofiber to Simultaneously Realize Electricity-Magnetism Bifunctionality. Materials Research, 2016, 19, 308-313.	0.6	7
120	Hydrothermal synthesis, multicolor tunable luminescence and energy transfer of Eu3+ or/and Tb3+ activated NaY(WO4)2 nanophosphors. Journal of Materials Science: Materials in Electronics, 2016, 27, 10780-10790.	1.1	13
121	Dual-mode, tunable color, enhanced upconversion luminescence and magnetism of multifunctional BaGdF ₅ :Ln ³⁺ (Ln = Yb/Er/Eu) nanophosphors. Physical Chemistry Chemical Physics, 2016, 18, 21518-21526.	1.3	34
122	Fabrication of novel Ba4Y3F17:Er3+ nanofibers with upconversion fluorescence via combination of electrospinning with fluorination. Journal of Materials Science: Materials in Electronics, 2016, 27, 11666-11673.	1,1	8
123	Tunable multicolor luminescence and white light emission realized in Eu ³⁺ mono-activated GdF ₃ nanofibers with paramagnetic performance. RSC Advances, 2016, 6, 113045-113052.	1.7	16
124	Fe ₃ O ₄ /rGO nanocomposite: synthesis and enhanced NO _x gas-sensing properties at room temperature. RSC Advances, 2016, 6, 37085-37092.	1.7	26
125	Doping Eu ³⁺ /Sm ³⁺ into CaWO ₄ :Tm ³⁺ , Dy ³⁺ phosphors and their luminescence properties, tunable color and energy transfer. RSC Advances, 2016, 6, 26239-26246.	1.7	22
126	Flexible Janus nanoribbons to help obtain simultaneous color-tunable enhanced photoluminescence, magnetism and electrical conduction trifunctionality. RSC Advances, 2016, 6, 36180-36191.	1.7	11

#	Article	IF	CITATIONS
127	NaGdF ₄ :Dy ³⁺ nanofibers and nanobelts: facile construction technique, structure and bifunctionality of luminescence and enhanced paramagnetic performances. Physical Chemistry Chemical Physics, 2016, 18, 27536-27544.	1.3	35
128	NaGdF 4 : Ln 3+ (Ln 3+ = Dy 3+ , Tb 3+) nanophosphors: Green-emitting and energy transfer excited by UV and n-UV light. Materials Research Bulletin, 2016, 84, 232-239.	2.7	10
129	Electrospun Li2MnO3-modified Li1.2NixCo0.1Mn0.9-xO2 nanofibers: Synthesis and enhanced electrochemical performance for lithium-ion batteries. Electronic Materials Letters, 2016, 12, 804-811.	1.0	10
130	Novel electrospun bilayered composite fibrous membrane endowed with tunable and simultaneous quadrifunctionality of electricity–magnetism at one layer and upconversion luminescence–photocatalysis at the other layer. RSC Advances, 2016, 6, 96084-96092.	1.7	6
131	Narrow-band red emitting phosphor BaTiF ₆ :Mn ⁴⁺ : preparation, characterization and application for warm white LED devices. Dalton Transactions, 2016, 45, 17886-17895.	1.6	60
132	Novel synthetic strategy towards NiO/Ni ₃ N composite hollow nanofibers for superior NO _x gas-sensing properties at room temperature. RSC Advances, 2016, 6, 97313-97321.	1.7	7
133	Novel Electrospun Dual-Layered Composite Nanofibrous Membrane Endowed with Electricity–Magnetism Bifunctionality at One Layer and Photoluminescence at the Other Layer. ACS Applied Materials & Interfaces, 2016, 8, 26226-26234.	4.0	36
134	Novel construction technique, structure and photocatalysis of Y ₂ O ₂ CN ₂ nanofibers and nanobelts. RSC Advances, 2016, 6, 43322-43329.	1.7	11
135	Highly uniform Co9S8 nanoparticles grown on graphene nanosheets as advanced anode materials for improved Li-storage performance. Applied Surface Science, 2016, 390, 86-91.	3.1	23
136	Synthesis of α-Fe ₂ O ₃ , Fe ₃ O ₄ and Fe ₂ N magnetic hollow nanofibers as anode materials for Li-ion batteries. RSC Advances, 2016, 6, 111447-111456.	1.7	30
137	One-step synthesis of flower-shaped WO ₃ nanostructures for a high-sensitivity room-temperature NO _x gas sensor. RSC Advances, 2016, 6, 106880-106886.	1.7	25
138	Electrospinning construction of Bi ₂ WO ₆ /RGO composite nanofibers with significantly enhanced photocatalytic water splitting activity. RSC Advances, 2016, 6, 64741-64748.	1.7	36
139	BaTiF ₆ :Mn ⁴⁺ bifunctional microstructures with photoluminescence and photocatalysis: hydrothermal synthesis and controlled morphology. CrystEngComm, 2016, 18, 5842-5851.	1.3	39
140	A new scheme to acquire BaY2F8:Er3+ nanofibers with upconversion luminescence. Journal of Materials Science: Materials in Electronics, 2016, 27, 9152-9158.	1.1	10
141	A new route to fabricate PbS nanofibers and PbSe nanofibers via electrospinning combined with double-crucible technique. Journal of Materials Science: Materials in Electronics, 2016, 27, 9772-9779.	1.1	3
142	Single-phase and warm white-light-emitting phosphors CaLa2â^'â^'(MoO4)4: xDy3+, yEu3+: Synthesis, luminescence and energy transfer. Journal of Luminescence, 2016, 178, 61-67.	1.5	17
143	Au@NaYF4:Tb3+ core@shell nanostructures: Synthesis and construction of luminescence resonance energy transfer. Journal of Luminescence, 2016, 171, 124-130.	1.5	10
144	Magnetic-optical-thermal properties assembled into MWCNTs/NaGdF 4 :Yb 3+ , Er 3+ multifunctional nanocomposites. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 490, 283-290.	2.3	6

#	Article	IF	CITATIONS
145	Er3+ doped BaYF5 nanofibers: facile construction technique, structure and upconversion luminescence. Journal of Materials Science: Materials in Electronics, 2016, 27, 5277-5283.	1.1	11
146	A new strategy to directly construct hybrid luminescence–photothermal–magnetism multifunctional nanocomposites for cancer up-conversion imaging and photothermal therapy. RSC Advances, 2016, 6, 3250-3258.	1.7	7
147	Flexible hollow nanofibers: Novel one-pot electrospinning construction, structure and tunable luminescence–electricity–magnetism trifunctionality. Chemical Engineering Journal, 2016, 284, 831-840.	6.6	68
148	Flexible Tricolor Flag-liked Microribbons Array with Enhanced Conductive Anisotropy and Multifunctionality. Scientific Reports, 2015, 5, 14583.	1.6	24
149	Electrospun Flexible Coaxial Nanoribbons Endowed With Tuned and Simultaneous Fluorescent Color-Electricity-Magnetism Trifunctionality. Scientific Reports, 2015, 5, 14052.	1.6	28
150	Electrospinning Preparation and Photoluminescence Properties of Y3Al5O12:Eu3+ Nanobelts. Materials Research, 2015, 18, 411-416.	0.6	7
151	Electricity–magnetism and color-tunable trifunction simultaneously assembled into one strip of flexible microbelt via electrospinning. Chemical Engineering Journal, 2015, 279, 231-240.	6.6	25
152	Tunable color and energy transfer of Tm ³⁺ and Ho ³⁺ co-doped NaGdF ₄ nanoparticles. RSC Advances, 2015, 5, 50611-50616.	1.7	14
153	Cadmium oxide nanofibers and nanobelts and their photodegradation. , 2015, , .		1
154	Synthesis and Luminescence Properties of Terbium-Doped Lanthanum Oxychloride Nanostructures. Journal of Nanoscience and Nanotechnology, 2015, 15, 4304-4315.	0.9	5
155	A Technique to Fabricate La ₂ O ₂ CN ₂ :Tb ³⁺ Nanofibers and Nanoribbons with the Same Morphologies as the Precursors. European Journal of Inorganic Chemistry, 2015, 2015, 389-396.	1.0	12
156	Flexible Janus Nanofiber to Help Achieve Simultaneous Enhanced Magnetism-Upconversion Luminescence Bifunction. IEEE Nanotechnology Magazine, 2015, 14, 243-249.	1.1	14
157	A feasible strategy to synthesize LaOI:Yb3+/Ho3+ upconversion luminescence nanostructures via succeeding to the morphologies of precursors. Chemical Engineering Journal, 2015, 266, 189-198.	6.6	12
158	In situ synthesis of porous Fe3O4/C composite nanobelts with tunable magnetism, electrical conduction and highly efficient adsorption characteristics. Journal of Materials Science: Materials in Electronics, 2015, 26, 2457-2465.	1.1	4
159	Dy3+ and Eu3+ complexes co-doped flexible composite nanofibers to achieve tunable fluorescent color. Journal of Materials Science: Materials in Electronics, 2015, 26, 3112-3118.	1.1	7
160	Tunable and enhanced simultaneous photoluminescence–electricity–magnetism trifunctionality successfully realized in flexible Janus nanofiber. Journal of Materials Science: Materials in Electronics, 2015, 26, 2658-2667.	1.1	3
161	Single Flexible Janus Nanobelts to Realize Tunable and Enhanced Simultaneous Photoluminescent, Electrical, and Magnetic Trifunctionality. ChemPlusChem, 2015, 80, 568-575.	1.3	10
162	Single flexible nanofiber to achieve simultaneous photoluminescence–electrical conductivity bifunctionality. Luminescence, 2015, 30, 26-31.	1.5	6

#	Article	IF	CITATIONS
163	Fabrication and Upconversion Luminescent Properties of Er ³⁺ â€Doped and Er ³⁺ /Yb ³⁺ Codoped La ₂ O ₂ CN ₂ Nanofibers. Journal of the American Ceramic Society, 2015, 98, 1215-1222.	1.9	15
164	Coaxial nanofibers to help achieve tunable and enhanced simultaneous magnetic-luminescent bifunctionality. Journal of Materials Science, 2015, 50, 1679-1687.	1.7	3
165	SnO ₂ nanocrystals anchored on N-doped graphene for high-performance lithium storage. Chemical Communications, 2015, 51, 3660-3662.	2.2	37
166	Multifunctional MWCNTs–NaGdF ₄ :Yb ³⁺ ,Er ³⁺ ,Eu ³⁺ hybrid nanocomposites with potential dual-mode luminescence, magnetism and photothermal properties. Physical Chemistry Chemical Physics, 2015, 17, 22659-22667.	1.3	30
167	Reddish-orange-emitting and paramagnetic properties of GdVO ₄ :Sm ³⁺ /Eu ³⁺ multifunctional nanomaterials. New Journal of Chemistry, 2015, 39, 8282-8290.	1.4	24
168	A novel strategy to directly fabricate flexible hollow nanofibers with tunable luminescence–electricity–magnetism trifunctionality using one-pot electrospinning. Physical Chemistry Chemical Physics, 2015, 17, 22977-22984.	1.3	21
169	Flexible composite nanobelts: facile electrospinning construction, structure and color-tunable photoluminescence. Journal of Materials Science: Materials in Electronics, 2015, 26, 8413-8420.	1.1	18
170	Multicolor photoluminescence and energy transfer properties of dysprosium and europium-doped Gd2O3 phosphors. Journal of Alloys and Compounds, 2015, 649, 96-103.	2.8	36
171	Novel flexible belt-shaped coaxial microcables with tunable multicolor luminescence, electrical conductivity and magnetism. Physical Chemistry Chemical Physics, 2015, 17, 21845-21855.	1.3	24
172	Au Nanorods@NaGdF ₄ /Yb ³⁺ ,Er ³⁺ Multifunctional Hybrid Nanocomposites with Upconversion Luminescence, Magnetism, and Photothermal Property. Journal of Physical Chemistry C, 2015, 119, 18527-18536.	1.5	47
173	Electrospinning-derived [C/Fe3O4]@C coaxial nanocables with tuned magnetism, electrical conduction and highly efficient adsorption trifunctionality. Journal of Materials Science: Materials in Electronics, 2015, 26, 8054-8064.	1.1	9
174	Flexible Janus nanofibers: a feasible route to realize simultaneously tuned magnetism and enhanced color-tunable luminescence bifunctionality. RSC Advances, 2015, 5, 35948-35957.	1.7	11
175	Synthesis and luminescence properties of Yb ³⁺ –Er ³⁺ co-doped LaOCl nanobelts via electrospinning combined with chlorination technique. Journal of Experimental Nanoscience, 2015, 10, 947-964.	1.3	4
176	Tunable and enhanced simultaneous magnetism-luminescence bifunctionality assembled into a coaxial nanofiber. New Journal of Chemistry, 2015, 39, 3444-3451.	1.4	11
177	Flexible Janus Nanoribbons Array: A New Strategy to Achieve Excellent Electrically Conductive Anisotropy, Magnetism, and Photoluminescence. Advanced Functional Materials, 2015, 25, 2436-2443.	7.8	123
178	Color-tunable luminescence nanofibers endowed with simultaneously tuned electricity–magnetism performance. Journal of Materials Science: Materials in Electronics, 2015, 26, 5994-6003.	1.1	12
179	Magnetism and white-light-emission bifunctionality simultaneously assembled into flexible Janus nanofiber via electrospinning. Journal of Materials Science, 2015, 50, 7884-7895.	1.7	15
180	Up/down conversion, tunable photoluminescence and energy transfer properties of NaLa(WO ₄) ₂ :Er ³⁺ ,Eu ³⁺ phosphors. RSC Advances, 2015, 5, 97995-98003.	1.7	39

#	Article	IF	CITATIONS
181	Tuned magnetism–luminescence bifunctionality simultaneously assembled into flexible Janus nanofiber. RSC Advances, 2015, 5, 12571-12577.	1.7	20
182	Impact of pH on Morphology and Electrochemical Performance of LiFePO4as Cathode for Lithium-ion Batteries. Integrated Ferroelectrics, 2015, 164, 98-102.	0.3	2
183	Tunable photoluminescence and magnetic properties of Dy ³⁺ and Eu ³⁺ doped GdVO ₄ multifunctional phosphors. Physical Chemistry Chemical Physics, 2015, 17, 26638-26644.	1.3	61
184	A direct warm-white-light CaLa ₂ (MoO ₄) ₄ : Tb ³⁺ , Sm ³⁺ phosphor with tunable color tone via energy transfer for white LEDs. RSC Advances, 2015, 5, 77866-77872.	1.7	31
185	Electrospinning preparation and photoluminescence properties of Y ₃ Al ₅ O ₁₂ :Tb ³⁺ nanostructures. Luminescence, 2015, 30, 751-759.	1.5	9
186	Flexible ribbon-shaped coaxial electrical conductive nanocable array endowed with magnetism and photoluminescence. RSC Advances, 2015, 5, 2523-2530.	1.7	19
187	A novel scheme to obtain tunable fluorescent colors based on electrospun composite nanofibers. Journal of Materials Science: Materials in Electronics, 2015, 26, 336-344.	1.1	10
188	Magnetic-upconversion luminescent bifunctional flexible coaxial nanoribbon and Janus nanoribbon: One-pot electrospinning preparation, structure and enhanced upconversion luminescent characteristics. Chemical Engineering Journal, 2015, 260, 222-230.	6.6	46
189	Luminescence, energy-transfer and tunable color properties of single-component Tb ³⁺ and/or Sm ³⁺ doped NaGd(WO ₄) ₂ phosphors with UV excitation for use as WLEDs. RSC Advances, 2014, 4, 58708-58716.	1.7	59
190	Fabrication of Magnetic–Fluorescent Bifunctional Flexible Coaxial Nanobelts by Electrospinning Using a Modified Coaxial Spinneret. ChemPlusChem, 2014, 79, 290-297.	1.3	51
191	Structure Design and Performance of LiNi _x Co _y Mn _{1â€xâ€y} O ₂ Cathode Materials for Lithiumâ€ion Batteries: A Review. Journal of the Chinese Chemical Society, 2014, 61, 1071-1083.	0.8	20
192	Preparation and upâ€conversion luminescence properties of LaOBr:Yb ³⁺ /Er ³⁺ nanofibers via electrospinning. Luminescence, 2014, 29, 908-913.	1.5	7
193	Synthesis and luminescence properties of Yb3+–Er3+ co-doped LaOCl nanostructures. Journal of Materials Science, 2014, 49, 2919-2931.	1.7	19
194	Fabrication of Er3+-doped LaOCI nanostructures with upconversion and near-infrared luminescence performances. Journal of Materials Science: Materials in Electronics, 2014, 25, 46-56.	1.1	13
195	Parallel spinnerets electrospinning construct and properties of electrical-luminescent bifunctional bistrand-aligned nanobundles. Journal of Materials Science, 2014, 49, 2171-2179.	1.7	9
196	Photoluminescence–electricity–magnetism trifunction simultaneously assembled into one flexible nanofiber. Journal of Materials Science: Materials in Electronics, 2014, 25, 1309-1316.	1.1	9
197	Electrospinning fabrication and characterization of magnetic-upconversion fluorescent bifunctional core–shell nanofibers. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	19
198	Study on terbium doped lanthanum oxybromide luminescent nanoribbons and nanofibers. Journal of Materials Science: Materials in Electronics, 2014, 25, 1657-1663.	1.1	2

#	Article	IF	CITATIONS
199	Facile Electrospinning Preparation and Up-Conversion Luminescence Performance of Y3Al5O12:Er3+, Yb3+ Nanobelts. Journal of Inorganic and Organometallic Polymers and Materials, 2014, 24, 407-415.	1.9	5
200	Facile electrospinning fabrication and photoluminescence of LaOI:Tb3+ one-dimensional nanomaterials. Journal of Materials Science: Materials in Electronics, 2014, 25, 1053-1062.	1.1	6
201	Preparation and electrochemical performances of LiFePO4/C composite nanobelts via facile electrospinning. Journal of Materials Science: Materials in Electronics, 2014, 25, 1040-1046.	1.1	9
202	Flexible Janus Nanofibers: Facile Electrospinning Construction and Enhanced Luminescent–Electrical–Magnetic Trifunctionality. ChemPlusChem, 2014, 79, 690-697.	1.3	28
203	A new strategy to assemble enhanced magnetic–photoluminescent bifunction into a flexible nanofiber. Journal of Materials Science, 2014, 49, 5418-5426.	1.7	9
204	Fabrication of novel La2O2CN2 one-dimensional nanostructures via facile electrospinning combined with cyanamidation technique. Chemical Engineering Journal, 2014, 250, 148-156.	6.6	9
205	One-pot coaxial electrospinning fabrication and properties of magnetic-luminescent bifunctional flexible hollow nanofibers. Materials Letters, 2014, 120, 126-129.	1.3	25
206	Controlled synthesis and tunable photoluminescence properties of LaOBr:Eu3+ nanostructures. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	0
207	Coaxial electrospinning preparation and properties of magnetic–photoluminescent bifunctional CoFe2O4@Y2O3:Eu3+ coaxial nanofibers. Journal of Materials Science: Materials in Electronics, 2014, 25, 4259-4267.	1.1	9
208	Flexible Janus nanofiber to acquire tuned and enhanced simultaneous magnetism-luminescence bifunctionality. Journal of Materials Science, 2014, 49, 7244-7252.	1.7	9
209	A new route to fabricate LaOI:Yb3+/Er3+ nanostructures via inheriting the morphologies of the precursors. CrystEngComm, 2014, 16, 10292-10299.	1.3	2
210	Multicolor tunable luminescence and paramagnetic properties of NaGdF4:Tb3+/Sm3+ multifunctional nanomaterials. Dalton Transactions, 2014, 43, 10801.	1.6	81
211	New strategy to achieve La ₂ O ₂ CN ₂ :Eu ³⁺ novel luminescent one-dimensional nanostructures. CrystEngComm, 2014, 16, 5409-5417.	1.3	12
212	Construction of Au@NaYF ₄ :Yb ³⁺ ,Er ³⁺ /Ho ³⁺ bifunctional hybrid nanocomposites with upconversion luminescence and photothermal properties. RSC Advances, 2014, 4, 62802-62808.	1.7	19
213	Controlled construction of hierarchical Co _{1â^'x} S structures as high performance anode materials for lithium ion batteries. CrystEngComm, 2014, 16, 814-819.	1.3	66
214	Janus nanobelts: fabrication, structure and enhanced magnetic–fluorescent bifunctional performance. Nanoscale, 2014, 6, 2945-2952.	2.8	112
215	Structural Phase Transition and Photoluminescence Properties of YF ₃ :Eu ³⁺ Nanocrystals under High Pressure. Journal of Physical Chemistry C, 2014, 118, 22739-22745.	1.5	29
216	A single flexible nanofiber to obtain simultaneous tunable color-electricity bifunctionality. Journal of Materials Science: Materials in Electronics, 2014, 25, 5395-5402.	1.1	10

#	Article	IF	CITATIONS
217	Single-Component and Warm-White-Emitting Phosphor NaGd(WO ₄) ₂ :Tm ³⁺ , Dy ³⁺ , Eu ³⁺ : Synthesis, Luminescence, Energy Transfer, and Tunable Color. Inorganic Chemistry, 2014, 53, 11457-11466.	1.9	194
218	Synthesis and luminescence resonance energy transfer based on noble metal nanoparticles and the NaYF ₄ :Tb ³⁺ shell. Physical Chemistry Chemical Physics, 2014, 16, 15139-15145.	1.3	28
219	Preparation of LaOBr:Er3+ Up-conversion Luminescent Nanobelts by Electrospinning Then Bromination. Journal of Electronic Materials, 2014, 43, 3701-3707.	1.0	8
220	A single nanobelt to achieve simultaneous photoluminescence–electricity–magnetism trifunction. Journal of Materials Science: Materials in Electronics, 2014, 25, 2279-2286.	1.1	11
221	A new tactics to fabricate flexible nanobelts with enhanced magnetic–luminescent bifunction. Journal of Materials Science: Materials in Electronics, 2014, 25, 2561-2568.	1.1	1
222	Synthesis of SnO2@SnS2 core–shell nanorods by double crucible method and their photocatalysis. Journal of Materials Science: Materials in Electronics, 2014, 25, 3801-3806.	1.1	8
223	Janus nanofiber: a new strategy to achieve simultaneous enhanced magnetic-photoluminescent bifunction. Journal of Materials Science: Materials in Electronics, 2014, 25, 4024-4032.	1.1	19
224	Tunable luminescence and energy transfer properties of NaGdF ₄ :Dy ³⁺ , Eu ³⁺ nanophosphors. New Journal of Chemistry, 2014, 38, 4901-4907.	1.4	69
225	Flexible Coaxial Nanofibers: A Strategy to Realize Tunable and Enhanced Magneticâ€Luminescent Bifunctionality. ChemPlusChem, 2014, 79, 1713-1719.	1.3	4
226	Electrospinning preparation and up-conversion luminescence properties of LaOBr:Er3+ nanofibers and nanoribbons. Chemical Engineering Journal, 2014, 244, 531-539.	6.6	28
227	Surfactant-assisted hydrothermal synthesis of octahedral structured NaGd(MoO4)2:Eu3+/Tb3+ and tunable photoluminescent properties. Optical Materials, 2014, 36, 1865-1870.	1.7	26
228	Flexible Janus nanofiber: A new tactics to realize tunable and enhanced magnetic-luminescent bifunction. Chemical Engineering Journal, 2014, 254, 259-267.	6.6	42
229	Parallel spinnerets electrospinning fabrication of novel flexible luminescent–electrical–magnetic trifunctional bistrand-aligned nanobundles. Chemical Engineering Journal, 2014, 243, 500-508.	6.6	29
230	Synthesis and luminescence properties of LaOCl:Nd ³ ⁺ nanostructures via combination of electrospinning with chlorination technique. Materials Express, 2014, 4, 13-22.	0.2	6
231	Electrospray ionization preparation and photodegradation properties of CeO ₂ microspheres with tunable morphologies. Materials Express, 2014, 4, 435-440.	0.2	2
232	Preparation of Ag@SiO ₂ @GdF ₃ :Er,Yb Core-shell Structure Nanomaterials and Enhanced Up-conversion Luminescence. Acta Chimica Sinica, 2014, 72, 257.	0.5	3
233	Synthesis and upconversion luminescence properties of YF3:Yb3+/Er3+ hollow nanofibers derived from Y2O3:Yb3+/Er3+ hollow nanofibers. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	23
234	Electrospinning preparation and properties of magnetic-photoluminescent bifunctional bistrand-aligned composite nanofibers bundles. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	28

#	Article	IF	CITATIONS
235	Electrospinning fabrication of high-performance magnetic@photoluminescent bifunctional coaxial nanocables. Chemical Engineering Journal, 2013, 222, 16-22.	6.6	63
236	Fabrication and luminescence properties of YF3:Eu3+ hollow nanofibers via coaxial electrospinning combined with fluorination technique. Journal of Materials Science, 2013, 48, 5930-5937.	1.7	31
237	Electrospinning fabrication and electrochemical properties of LiFePO4/C composite nanofibers. Journal of Materials Science: Materials in Electronics, 2013, 24, 4263-4269.	1.1	16
238	Fabrication and luminescence of YF3:Tb3+ hollow nanofibers. Journal of Materials Science: Materials in Electronics, 2013, 24, 3041-3048.	1.1	22
239	Electrospinning fabrication and properties of Fe3O4/Eu(BA)3phen/PMMA magnetic–photoluminescent bifunctional composite nanoribbons. Optical Materials, 2013, 35, 526-530.	1.7	49
240	Synthesis and luminescence properties of YF3:Eu3+ hollow nanofibers via the combination of electrospinning with fluorination technique. Journal of Fluorine Chemistry, 2013, 145, 70-76.	0.9	24
241	Synthesis and luminescence properties of LaOCl:Eu3+ nanostructures via the combination of electrospinning with chlorination technique. Journal of Materials Science: Materials in Electronics, 2013, 24, 4745-4756.	1.1	24
242	Coaxial electrospinning fabrication and electrochemical properties of LiFePO4/C/Ag composite hollow nanofibers. Journal of Materials Science: Materials in Electronics, 2013, 24, 4718-4724.	1.1	19
243	Structural phase transition and photoluminescence properties of YF3 and YF3:Eu3+ under high pressure. Physical Chemistry Chemical Physics, 2013, 15, 19925.	1.3	32
244	Synthesis of Y2O2S:Eu3+ luminescent nanobelts via electrospinning combined with sulfurization technique. Journal of Materials Science, 2013, 48, 644-650.	1.7	61
245	Electrospinning preparation of LaOBr:Tb3+ nanostructures and their photoluminescence properties. Journal of Materials Science, 2013, 48, 2557-2565.	1.7	36
246	Electrospinning preparation and properties of Fe3O4/Eu(BA)3phen/PVP magnetic-photoluminescent bifunctional composite nanofibers. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	45
247	Electrospinning preparation and properties of magnetic-photoluminescent bifunctional coaxial nanofibers. Journal of Materials Chemistry, 2012, 22, 14438.	6.7	88
248	Magnetic, luminescent and core–shell structured Fe3O4@YF3:Ce3+,Tb3+ bifunctional nanocomposites. Powder Technology, 2012, 215-216, 242-246.	2.1	16
249	Electrospinning Fabrication of Tb(BA)3phen/PANI/PVP Luminescence-Electricity Bifunctional Composite Nanofibers. Acta Chimica Sinica, 2012, 70, 1576.	O.5	8
250	Preparation and characteristics of Fe3O4@YVO4:Eu3+ bifunctional magnetic–luminescent nanocomposites. Journal of Alloys and Compounds, 2011, 509, 6930-6934.	2.8	61
251	Y2O3:Eu3+ Core-In-Multi-Hollow Microspheres: Facile Synthesis and Luminescence Properties. Journal of Nanoscience and Nanotechnology, 2011, 11, 9757-9760.	0.9	7
252	Preparation and Characterization of Polycrystalline La ₂ Zr ₂ O ₇ Ultrafine Fibres via Electrospinning. Journal of Nanoscience and Nanotechnology, 2011, 11, 2514-2519.	0.9	30

#	Article	IF	CITATIONS
253	Architectures of YF3:Eu3+ solid and hollow sub-microspheres: a facile arginine-assisted hydrothermal synthesis and luminescence properties. Journal of Nanoparticle Research, 2011, 13, 4025-4034.	0.8	8
254	Preparation and wear resistance of Ti–Zr–Ni quasicrystal and polyamide composite materials. Philosophical Magazine, 2011, 91, 2929-2936.	0.7	5
255	xmins:mmi= http://www.w3.org/1998/Wath/Wath/Wath/With/With/With/With/With/With/With/Wi		
256	Nan New development of nanocrystalline TiO <inf>2</inf> -based dye-sensitized solar cells. , 2009, , .		0
257	Glycine-assisted hydrothermal synthesis of YPO4:Eu3+ nanobundles. Materials Letters, 2009, 63, 629-631.	1.3	36
258	Silver microspheres for application as hydrogen peroxide sensor. Electrochemistry Communications, 2009, 11, 1707-1710.	2.3	159
259	Glycine-assisted hydrothermal synthesis of single-crystalline LaF3:Eu3+ hexagonal nanoplates. Journal of Alloys and Compounds, 2009, 487, 298-303.	2.8	30
260	Direct fabrication of cerium oxide hollow nanofibers by electrospinning. Journal of Rare Earths, 2008, 26, 664-669.	2.5	126
261	Preparation and characterization of Gd2O3:Eu3+ luminescence nanotubes. Journal of Alloys and Compounds, 2008, 466, 512-516.	2.8	22
262	Hydrothermal synthesis of spherical and hollow Gd2O3:Eu3+ phosphors. Journal of Alloys and Compounds, 2007, 432, 200-204.	2.8	75
263	Silica-coated Y2O3:Eu nanoparticles and their luminescence properties. Journal of Luminescence, 2007, 126, 702-706.	1.5	23
264	Synthesis of Y2 O3: Eu3+ Hollow Spheres Using Silica as Templates. Journal of Rare Earths, 2007, 25, 407-411.	2.5	10
265	Synthesis of Li _{1.2} Mn _{0.54} Ni _{0.13} Co _{0.13} O ₂ nanorods by a facile self-template method and their electrochemical performances. Nano, 0, , .	0.5	0