Li Shen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4384434/publications.pdf Version: 2024-02-01

		471371	642610
24	1,612	17	23
papers	citations	h-index	g-index
24	24	24	2095
all docs	docs citations	times ranked	citing authors

LI SHEN

#	Article	IF	CITATIONS
1	Electrolyte Modulators toward Polarizationâ€Mitigated Lithiumâ€Ion Batteries for Sustainable Electric Transportation. Advanced Materials, 2022, 34, e2107787.	11.1	15
2	Spheres of Graphene and Carbon Nanotubes Embedding Silicon as Mechanically Resilient Anodes for Lithium-Ion Batteries. Nano Letters, 2022, 22, 3054-3061.	4.5	42
3	High Performance Sodium Ion Anodes Based on Sn ₄ P ₃ Encapsulated within Amphiphilic Graphene Tubes. Advanced Energy Materials, 2022, 12, .	10.2	18
4	High-Performance Battery Separator Made by Thermally Activated Metal–Organic Frameworks. ACS Applied Energy Materials, 2022, 5, 5519-5524.	2.5	6
5	Graphite-Embedded Lithium Iron Phosphate for High-Power–Energy Cathodes. Nano Letters, 2021, 21, 2572-2579.	4.5	33
6	Electrolyte Interphase Built from Anionic Covalent Organic Frameworks for Lithium Dendrite Suppression. Advanced Functional Materials, 2021, 31, 2009718.	7.8	43
7	Dual redox mediators accelerate the electrochemical kinetics of lithium-sulfur batteries. Nature Communications, 2020, 11, 5215.	5.8	113
8	lon-Transport-Rectifying Layer Enables Li-Metal Batteries with High Energy Density. Matter, 2020, 3, 1685-1700.	5.0	75
9	Facilitating Lithium-Ion Conduction in Gel Polymer Electrolyte by Metal-Organic Frameworks. , 2020, 2, 1435-1441.		48
10	Particulate Anion Sorbents as Electrolyte Additives for Lithium Batteries. Advanced Functional Materials, 2020, 30, 2003055.	7.8	38
11	Semiliquid electrolytes with anion-adsorbing metal–organic frameworks for high-rate lithium batteries. Chemical Communications, 2020, 56, 13603-13606.	2.2	6
12	Class of Solid-like Electrolytes for Rechargeable Batteries Based on Metal–Organic Frameworks Infiltrated with Liquid Electrolytes. ACS Applied Materials & Interfaces, 2020, 12, 43824-43832.	4.0	25
13	Electrolyte Membranes with Biomimetic Lithium-Ion Channels. Nano Letters, 2020, 20, 5435-5442.	4.5	49
14	CVD-assisted fabrication of hierarchical microparticulate Li ₂ TiSiO ₅ -carbon nanospheres for ultrafast lithium storage. Nanoscale, 2020, 12, 13918-13925.	2.8	6
15	Porous carbon microspheres with highly graphitized structure for potassium-ion storage. Journal of Colloid and Interface Science, 2020, 577, 48-53.	5.0	22
16	Anchoring anions with metal–organic framework-functionalized separators for advanced lithium batteries. Nanoscale Horizons, 2019, 4, 705-711.	4.1	71
17	Anionâ€Sorbent Composite Separators for Highâ€Rate Lithiumâ€Ion Batteries. Advanced Materials, 2019, 31, e1808338.	11.1	178
18	High-quality mesoporous graphene particles as high-energy and fast-charging anodes for lithium-ion batteries. Nature Communications, 2019, 10, 1474.	5.8	140

LI SHEN

#	Article	IF	CITATIONS
19	Creating Lithiumâ€Ion Electrolytes with Biomimetic Ionic Channels in Metal–Organic Frameworks. Advanced Materials, 2018, 30, e1707476.	11.1	230
20	Fabrication of Hybrid Silicate Coatings by a Simple Vapor Deposition Method for Lithium Metal Anodes. Advanced Energy Materials, 2018, 8, 1701744.	10.2	138
21	Regenerative Polysulfide-Scavenging Layers Enabling Lithium–Sulfur Batteries with High Energy Density and Prolonged Cycling Life. ACS Nano, 2017, 11, 2697-2705.	7.3	132
22	Encapsulation of SnO ₂ nanocrystals into hierarchically porous carbon by melt infiltration for high-performance lithium storage. Journal of Materials Chemistry A, 2016, 4, 18706-18710.	5.2	42
23	A comprehensive study on electrochemical performance of Mn-surface-modified LiNi0.8Co0.15Al0.05O2 synthesized by an in situ oxidizing-coating method. Journal of Power Sources, 2014, 252, 200-207.	4.0	125
24	Synthesis and performance of LiVPO4F/C-based cathode material for lithium ion battery. Transactions of Nonferrous Metals Society of China, 2013, 23, 1718-1722.	1.7	17