Qing-Hua Xu

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4384288/qing-hua-xu-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

66 13,256 104 243 h-index g-index citations papers 6.63 14,887 8.3 258 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
243	Tailoring the coercive field in ferroelectric metal-free perovskites by hydrogen bonding <i>Nature Communications</i> , 2022 , 13, 794	17.4	3
242	Strong red upconversion luminescence and optical thermometry of Yb3+/Er3+ Co-doped Ba2ScAlO5 phosphor. <i>Journal of Alloys and Compounds</i> , 2022 , 895, 162692	5.7	4
241	Extended Conjugated Polymer Acceptor Containing Thienylene Vinylene II hienylene Unit for High-Performance Thick-Film All-Polymer Solar Cells with Superior Long-Term Stability. <i>Advanced Energy Materials</i> , 2021 , 11, 2102559	21.8	23
240	Single-particle studies on plasmon enhanced photoluminescence of monolayer MoS by gold nanoparticles of different shapes <i>Journal of Chemical Physics</i> , 2021 , 155, 234201	3.9	1
239	High-Yield Exfoliation of Monolayer 1T'-MoTe as Saturable Absorber for Ultrafast Photonics. <i>ACS Nano</i> , 2021 ,	16.7	5
238	Nonhalogenated-Solvent-Processed High-Performance All-Polymer Solar Cell with Efficiency over 14%. <i>Solar Rrl</i> , 2021 , 5, 2100076	7.1	10
237	Multifunctional Properties of a Zn(II) Coordination Complex. Crystal Growth and Design, 2021, 21, 3401-	3 49 8	4
236	In Situ Synthesis of Lead-Free Halide Perovskite CsAgBiBr Supported on Nitrogen-Doped Carbon for Efficient Hydrogen Evolution in Aqueous HBr Solution. <i>ACS Applied Materials & Distriction</i> , 10037-10046	9.5	18
235	Homogeneous Carbon/Potassium-Incorporation Strategy for Synthesizing Red Polymeric Carbon Nitride Capable of Near-Infrared Photocatalytic H Production. <i>Advanced Materials</i> , 2021 , 33, e2101455	24	30
234	Dual Blue Emission in Ruddlesden Popper Lead-Bromide Perovskites Induced by Photon Recycling. Journal of Physical Chemistry C, 2021 , 125, 18308-18316	3.8	2
233	Band Nesting Bypass in WS Monolayers Fister Resonance Energy Transfer. ACS Nano, 2020, 14, 5946-59	55 5.7	4
232	Synthesis of Two-Dimensional Perovskite by Inverse Temperature Crystallization and Studies of Exciton States by Two-Photon Excitation Spectroscopy. <i>Advanced Functional Materials</i> , 2020 , 30, 200260	6 ¹ 5.6	9
231	Two-Photon Absorption of Butterfly-Shaped Carbonyl-Bridged Twistarene. <i>Asian Journal of Organic Chemistry</i> , 2020 , 9, 579-583	3	2
230	Photoluminescence Mechanisms of All-Inorganic Cesium Lead Bromide Perovskites Revealed by Single Particle Spectroscopy. <i>ChemNanoMat</i> , 2020 , 6, 327-335	3.5	11
229	One-Step Photocontrolled Polymerization-Induced Self-Assembly (Photo-PISA) by Using In Situ Bromine-Iodine Transformation Reversible-Deactivation Radical Polymerization. <i>Polymers</i> , 2020 , 12,	4.5	5
228	Giant Emission Enhancement of Solid-State Gold Nanoclusters by Surface Engineering. <i>Angewandte Chemie</i> , 2020 , 132, 8347-8353	3.6	7
227	Designing Sub-2 nm Organosilica Nanohybrids for Far-Field Super-Resolution Imaging. <i>Angewandte Chemie</i> , 2020 , 132, 756-761	3.6	2

(2019-2020)

226	Designing Sub-2 nm Organosilica Nanohybrids for Far-Field Super-Resolution Imaging. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 746-751	16.4	16	
225	AIE-active polysulfates via a sulfur(VI) fluoride exchange (SuFEx) click reaction and investigation of their two-photon fluorescence and cyanide detection in water and in living cells. <i>Polymer Chemistry</i> , 2020 , 11, 1033-1042	4.9	12	
224	Aggregation of Metal-Nanoparticle-Induced Fluorescence Enhancement and Its Application in Sensing. <i>ACS Omega</i> , 2020 , 5, 41-48	3.9	11	
223	Self-Powered Photodetector Using Two-Dimensional Ferroelectric Dion-Jacobson Hybrid Perovskites. <i>Journal of the American Chemical Society</i> , 2020 , 142, 18592-18598	16.4	35	
222	Photocatalytic Hydrogen Evolution: Photocatalytic Hydrogen Evolution under Ambient Conditions on Polymeric Carbon Nitride/Donor-FAcceptor Organic Molecule Heterostructures (Adv. Funct. Mater. 43/2020). <i>Advanced Functional Materials</i> , 2020 , 30, 2070288	15.6	3	
221	Photocatalytic Hydrogen Evolution under Ambient Conditions on Polymeric Carbon Nitride/Donor-FAcceptor Organic Molecule Heterostructures. <i>Advanced Functional Materials</i> , 2020 , 30, 2005106	15.6	18	
220	Giant Enhancement of Second Harmonic Generation Accompanied by the Structural Transformation of 7-Fold to 8-Fold Interpenetrated Metal-Organic Frameworks (MOFs). <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 833-838	16.4	33	
219	Aggregation-Induced Plasmon Coupling-Enhanced One- and Two-Photon Excitation Fluorescence by Silver Nanoparticles. <i>Langmuir</i> , 2020 , 36, 4721-4727	4	6	
218	Giant Emission Enhancement of Solid-State Gold Nanoclusters by Surface Engineering. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 8270-8276	16.4	28	
217	High-performance and stable CsPbBr light-emitting diodes based on polymer additive treatment <i>RSC Advances</i> , 2019 , 9, 27684-27691	3.7	17	
216	Aggregation induced emission enhancement by plasmon coupling of noble metal nanoparticles. <i>Materials Chemistry Frontiers</i> , 2019 , 3, 2421-2427	7.8	10	
215	Ferroelectricity and Rashba Effect in a Two-Dimensional Dion-Jacobson Hybrid Organic-Inorganic Perovskite. <i>Journal of the American Chemical Society</i> , 2019 , 141, 15972-15976	16.4	65	
214	Gold nanorod enhanced conjugated polymer/photosensitizer composite nanoparticles for simultaneous two-photon excitation fluorescence imaging and photodynamic therapy. <i>Nanoscale</i> , 2019 , 11, 19551-19560	7.7	31	
213	Highly stable enhanced near-infrared amplified spontaneous emission in solution-processed perovskite films by employing polymer and gold nanorods. <i>Nanoscale</i> , 2019 , 11, 1959-1967	7.7	19	
212	Enhancement in the photovoltaic performance of planar perovskite solar cells by perovskite cluster engineering using an interfacial energy modifier. <i>Nanoscale</i> , 2019 , 11, 3216-3221	7.7	9	
211	Thermally evaporated two-dimensional SnS as an efficient and stable electron collection interlayer for inverted planar perovskite solar cells. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 4759-4765	13	12	
210	The photoluminescence mechanism of CsPbBr microplates revealed by spatially resolved single particle spectroscopy. <i>Nanoscale</i> , 2019 , 11, 3186-3192	7.7	30	
209	Controlled Aqueous Synthesis of 2D Hybrid Perovskites with Bright Room-Temperature Long-Lived Luminescence. <i>Journal of Physical Chemistry Letters</i> , 2019 , 10, 2869-2873	6.4	24	

208	An efficient binary cathode interlayer for large-bandgap non-fullerene organic solar cells. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 12426-12433	13	15
207	Titelbild: Disorder Engineering in Monolayer Nanosheets Enabling Photothermic Catalysis for Full Solar Spectrum (250\(\mathbb{Z}\)500 nm) Harvesting (Angew. Chem. 10/2019). <i>Angewandte Chemie</i> , 2019 , 131, 2933-2933	3.6	
206	20.7% highly reproducible inverted planar perovskite solar cells with enhanced fill factor and eliminated hysteresis. <i>Energy and Environmental Science</i> , 2019 , 12, 1622-1633	35.4	134
205	New Family of Plasmonic Photocatalysts without Noble Metals. <i>Chemistry of Materials</i> , 2019 , 31, 2320-7	23328	17
204	Photo-Controlled Polymerization-Induced Self-Assembly (Photo-PISA): A Novel Strategy Using In Situ Bromine-Iodine Transformation Living Radical Polymerization. <i>Macromolecular Rapid Communications</i> , 2019 , 40, e1800327	4.8	22
203	Highly Stable Two-Dimensional Tin(II) Iodide Hybrid OrganicIhorganic Perovskite Based on Stilbene Derivative. <i>Advanced Functional Materials</i> , 2019 , 29, 1904810	15.6	36
202	Gate-Tunable In-Plane Ferroelectricity in Few-Layer SnS. <i>Nano Letters</i> , 2019 , 19, 5109-5117	11.5	80
201	Gold nanorod-enhanced two-photon excitation fluorescence of conjugated oligomers for two-photon imaging guided photodynamic therapy. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 14693-14	7 7 7 0	14
200	Simultaneous Imaging and Selective Photothermal Therapy through Aptamer-Driven Au Nanosphere Clustering. <i>Journal of Physical Chemistry Letters</i> , 2019 , 10, 183-188	6.4	14
199	In situ growth of FeO@CoO core-shell wormlike nanoarrays for a highly efficient photoelectrochemical water oxidation reaction. <i>Nanoscale</i> , 2019 , 11, 1111-1122	7.7	13
198	Disorder Engineering in Monolayer Nanosheets Enabling Photothermic Catalysis for Full Solar Spectrum (250\(\mathbb{Z}\)500 nm) Harvesting. <i>Angewandte Chemie</i> , 2019 , 131, 3109-3113	3.6	8
197	Disorder Engineering in Monolayer Nanosheets Enabling Photothermic Catalysis for Full Solar Spectrum (250-2500 nm) Harvesting. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 3077-3081	16.4	61
196	Red emitting conjugated polymer based nanophotosensitizers for selectively targeted two-photon excitation imaging guided photodynamic therapy. <i>Nanoscale</i> , 2018 , 11, 185-192	7.7	18
195	Templating nanotraffic light Idynamic tricoloured blinking silver nanoclusters on a graphene oxide film. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 4641-4648	7.1	8
194	Vapour-liquid-solid growth of monolayer MoS nanoribbons. <i>Nature Materials</i> , 2018 , 17, 535-542	27	185
193	Metal Nanoparticles for Diagnosis and Therapy of Bacterial Infection. <i>Advanced Healthcare Materials</i> , 2018 , 7, e1701392	10.1	92
192	Conjugated Polymers for Two-Photon Live Cell Imaging 2018 , 135-170		1
191	Enhancement of Two-Photon Fluorescence and Low Threshold Amplification of Spontaneous Emission of Zn-processed CuInS2 Quantum Dots. <i>ACS Photonics</i> , 2018 , 5, 1310-1317	6.3	9

(2017-2018)

190	Controllable deuteration of halogenated compounds by photocatalytic DO splitting. <i>Nature Communications</i> , 2018 , 9, 80	17.4	88
189	Alkali Salt-Doped Highly Transparent and Thickness-Insensitive Electron-Transport Layer for High-Performance Polymer Solar Cell. <i>ACS Applied Materials & Discrete Solar Cell. ACS ACS ACS ACS ACS ACS ACS ACS ACS ACS</i>	9.5	16
188	Selectively Plasmon-Enhanced Second-Harmonic Generation from Monolayer Tungsten Diselenide on Flexible Substrates. <i>ACS Nano</i> , 2018 , 12, 1859-1867	16.7	58
187	Inverse Stellation of CuAu-ZnO Multimetallic-Semiconductor Nanostartube for Plasmon-Enhanced Photocatalysis. <i>ACS Nano</i> , 2018 , 12, 4512-4520	16.7	47
186	Ultrafast carrier dynamics and third-order nonlinear optical properties of AgInS/ZnS nanocrystals. <i>Nanotechnology</i> , 2018 , 29, 255703	3.4	10
185	Au Nanorod/ZnO CoreBhell Nanoparticles as Nano-Photosensitizers for Near-Infrared Light-Induced Singlet Oxygen Generation. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 7824-7830	3.8	21
184	Investigation on the structural, morphological, electronic and photovoltaic properties of a perovskite thin film by introducing lithium halide <i>RSC Advances</i> , 2018 , 8, 11455-11461	3.7	4
183	Polyfluorene based conjugated polymer nanoparticles for two-photon live cell imaging. <i>Science China Chemistry</i> , 2018 , 61, 88-96	7.9	19
182	Pyrrolopyrrole aza boron dipyrromethene based two-photon fluorescent probes for subcellular imaging. <i>Journal of Materials Chemistry B</i> , 2018 , 6, 5570-5581	7.3	9
181	Tuneable near white-emissive two-dimensional covalent organic frameworks. <i>Nature Communications</i> , 2018 , 9, 2335	17.4	159
180	Two-Photon Photoluminescence and Photothermal Properties of Hollow Gold Nanospheres for Efficient Theranostic Applications. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 13304-13313	3.8	8
179	Polymer-Assisted In Situ Growth of All-Inorganic Perovskite Nanocrystal Film for Efficient and Stable Pure-Red Light-Emitting Devices. <i>ACS Applied Materials & Devices</i> , 2018, 10, 42564-42572	9.5	62
178	Single-Particle Spectroscopic Studies on Two-Photon Photoluminescence of Coupled Au Nanorod		8
	Dimers. Journal of Physical Chemistry C, 2018, 122, 23102-23110	3.8	
177		27	207
177 176	Dimers. Journal of Physical Chemistry C, 2018, 122, 23102-23110 Molecularly thin two-dimensional hybrid perovskites with tunable optoelectronic properties due to		
	Dimers. Journal of Physical Chemistry C, 2018, 122, 23102-23110 Molecularly thin two-dimensional hybrid perovskites with tunable optoelectronic properties due to reversible surface relaxation. Nature Materials, 2018, 17, 908-914 Elucidating Surface and Bulk Emission in 3D Hybrid OrganicIhorganic Lead Bromide Perovskites.	27	207
176	Dimers. Journal of Physical Chemistry C, 2018, 122, 23102-23110 Molecularly thin two-dimensional hybrid perovskites with tunable optoelectronic properties due to reversible surface relaxation. Nature Materials, 2018, 17, 908-914 Elucidating Surface and Bulk Emission in 3D Hybrid OrganicIhorganic Lead Bromide Perovskites. Advanced Optical Materials, 2018, 6, 1800470 Plasmon-Enhanced Fluorescence in Coupled Nanostructures and Applications in DNA Detection.	27 8.1	207

172	Size-dependent nonlinear optical properties of black phosphorus nanosheets and their applications in ultrafast photonics. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 3007-3013	7.1	121
171	Electrostatically self-assembled chitosan derivatives working as efficient cathode interlayers for organic solar cells. <i>Nano Energy</i> , 2017 , 34, 164-171	17.1	28
170	Electron transport and visible light absorption in a plasmonic photocatalyst based on strontium niobate. <i>Nature Communications</i> , 2017 , 8, 15070	17.4	48
169	Visible-light-induced living radical polymerization using in situ bromine-iodine transformation as an internal boost. <i>Polymer Chemistry</i> , 2017 , 8, 2538-2551	4.9	31
168	Plasmon-Enhanced Two-Photon Excitation Fluorescence and Biomedical Applications 2017 , 211-225		4
167	Flower-like Au/Ag/TiO2 nanocomposites with enhanced photocatalytic efficiency under visible light irradiation. <i>Science China Chemistry</i> , 2017 , 60, 521-527	7.9	6
166	Bose E instein oscillators and the excitation mechanism of free excitons in 2D layered organic [horganic perovskites. <i>RSC Advances</i> , 2017 , 7, 18366-18373	3.7	7
165	Ultrathin two-dimensional porous organic nanosheets with molecular rotors for chemical sensing. <i>Nature Communications</i> , 2017 , 8, 1142	17.4	119
164	Photoinduced Nickel-Catalyzed Chemo- and Regioselective Hydroalkylation of Internal Alkynes with Ether and Amide Hetero C(sp)-H Bonds. <i>Journal of the American Chemical Society</i> , 2017 , 139, 135	79 ⁻¹⁶ 458	34 ¹¹⁴
163	Enhanced planar heterojunction perovskite solar cell performance and stability using PDDA polyelectrolyte capping agent. <i>Solar Energy Materials and Solar Cells</i> , 2017 , 172, 133-139	6.4	18
162	Two-Photon Excitation of Gold Nanorods Interrupted by Extremely Fast Solvent-to-Metal Electron Transfer. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 28546-28555	3.8	3
161	Ultrathin nickel boron oxide nanosheets assembled vertically on graphene: a new hybrid 2D material for enhanced photo/electro-catalysis. <i>Materials Horizons</i> , 2017 , 4, 885-894	14.4	90
160	Spontaneous Electroless Galvanic Cell Deposition of 3D Hierarchical and Interlaced S-M-S Heterostructures. <i>Advanced Materials</i> , 2017 , 29, 1604417	24	15
159	Au-Ag core-shell nanoparticles for simultaneous bacterial imaging and synergistic antibacterial activity. <i>Nanomedicine: Nanotechnology, Biology, and Medicine</i> , 2017 , 13, 297-305	6	55
158	Tunable Broadband Nonlinear Optical Properties of Black Phosphorus Quantum Dots for Femtosecond Laser Pulses. <i>Materials</i> , 2017 , 10,	3.5	51
157	Gold nanorings synthesized via a stress-driven collapse and etching mechanism. <i>NPG Asia Materials</i> , 2016 , 8, e323-e323	10.3	15
156	Lighting up the gold nanoparticles quenched fluorescence by silver nanoparticles: a separation distance study. <i>RSC Advances</i> , 2016 , 6, 58566-58572	3.7	19
155	Highly sensitive and selective two-photon sensing of cartap using Au@Ag core-shell nanoparticles. <i>Science China Chemistry</i> , 2016 , 59, 78-82	7.9	15

(2015-2016)

154	Nanoprecipitation of Fluorescent Conjugated Polymer onto the Surface of Plasmonic Nanoparticle for Fluorescence/Dark-Field Dual-Modality Single Particle Imaging. <i>Analytical Chemistry</i> , 2016 , 88, 6827	7-3 5 8	22
153	Boosting the performance of planar heterojunction perovskite solar cell by controlling the precursor purity of perovskite materials. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 887-893	13	117
152	Simulation of fluorescence enhancement by an AFM tip on a gold particle quenched emitter. <i>Applied Optics</i> , 2016 , 55, 8722-8726	0.2	1
151	A Simple BODIPY-Based Viscosity Probe for Imaging of Cellular Viscosity in Live Cells. <i>Sensors</i> , 2016 , 16,	3.8	44
150	Actively Tunable Visible Surface Plasmons in Bi2 Te3 and their Energy-Harvesting Applications. <i>Advanced Materials</i> , 2016 , 28, 3138-44	24	53
149	High performance planar perovskite solar cells with a perovskite of mixed organic cations and mixed halides, MA1NFAxPbI3NCly. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 12543-12553	13	57
148	Two-Photon Enzymatic Probes Visualizing Sub-cellular/Deep-brain Caspase Activities in Neurodegenerative Models. <i>Scientific Reports</i> , 2016 , 6, 26385	4.9	8
147	Enhancing the planar heterojunction perovskite solar cell performance through tuning the precursor ratio. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 7943-7949	13	79
146	Single Particle Studies on Two-Photon Photoluminescence of Gold NanorodNanosphere Heterodimers. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 11621-11630	3.8	20
145	Variations in the 5D0 -mF0II transitions of Eu3+ and white light emissions in AgEu exchanged zeolite-Y. <i>RSC Advances</i> , 2016 , 6, 95925-95935	3.7	10
144	Elucidating the charge carrier transport and extraction in planar heterojunction perovskite solar cells by Kelvin probe force microscopy. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 17464-17472	13	38
143	Enhancing the photovoltaic performance of planar heterojunction perovskite solar cells by doping the perovskite layer with alkali metal ions. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 16546-16552	13	119
142	Interface studies of the planar heterojunction perovskite solar cells. <i>Solar Energy Materials and Solar Cells</i> , 2016 , 157, 783-790	6.4	38
141	Self-Template Synthesis of Porous Perovskite Titanate Solid and Hollow Submicrospheres for Photocatalytic Oxygen Evolution and Mesoscopic Solar Cells. <i>ACS Applied Materials & amp; Interfaces</i> , 2015 , 7, 14859-69	9.5	55
140	Controlled preparation of Au/Ag/SnO2 core-shell nanoparticles using a photochemical method and applications in LSPR based sensing. <i>Nanoscale</i> , 2015 , 7, 9025-32	7.7	25
139	Fast Charge Separation at Semiconductor Sensitizer Molecular Relay Interface Leads to Significantly Enhanced Solar Cell Performance. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 9774-9781	3.8	14
138	Plasmon-enhanced light harvesting: applications in enhanced photocatalysis, photodynamic therapy and photovoltaics. <i>RSC Advances</i> , 2015 , 5, 29076-29097	3.7	163
137	Plasmon coupling-enhanced two-photon photoluminescence of Au@Ag core-shell nanoparticles and applications in the nuclease assay. <i>Nanoscale</i> , 2015 , 7, 10233-9	7.7	30

136	Development of targetable two-photon fluorescent probes to image hypochlorous Acid in mitochondria and lysosome in live cell and inflamed mouse model. <i>Journal of the American Chemical Society</i> , 2015 , 137, 5930-8	16.4	394
135	Red-emitting DPSB-based conjugated polymer nanoparticles with high two-photon brightness for cell membrane imaging. <i>ACS Applied Materials & Description</i> (2015), 7, 6754-63	9.5	44
134	Ultralow-threshold multiphoton-pumped lasing from colloidal nanoplatelets in solution. <i>Nature Communications</i> , 2015 , 6, 8513	17.4	84
133	Flexible, robust and highly efficient broadband nonlinear optical materials based on graphene oxide impregnated polymer sheets. <i>Photonics Research</i> , 2015 , 3, A87	6	17
132	4-Diphenylamino-phenyl substituted pyrazine: nonlinear optical switching by protonation. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 9191-9196	7.1	77
131	Highly efficient, conjugated-polymer-based nano-photosensitizers for selectively targeted two-photon photodynamic therapy and imaging of cancer cells. <i>Chemistry - A European Journal</i> , 2015 , 21, 2214-21	4.8	46
130	Photoactive PDI-cobalt complex immobilized on reduced graphene oxide for photoelectrochemical water splitting. <i>ACS Applied Materials & amp; Interfaces</i> , 2015 , 7, 880-6	9.5	34
129	Graphene Nanobubbles: A New Optical Nonlinear Material. Advanced Optical Materials, 2015 , 3, 744-74	98.1	44
128	Alloyed ZnS-CuInS2 Semiconductor Nanorods and Their Nanoscale Heterostructures for Visible-Light-Driven Photocatalytic Hydrogen Generation. <i>Chemistry - A European Journal</i> , 2015 , 21, 951	14498	39
127	Towards meso-Ester BODIPYs with Aggregation-Induced Emission Properties: The Effect of Substitution Positions. <i>Chemistry - an Asian Journal</i> , 2015 , 10, 1631-4	4.5	34
126	Synthesis and Morphology of Two Carbazole-Pyrazoline-Containing Polymer Systems and Their Electrical Memory Performance. <i>ChemPlusChem</i> , 2015 , 80, 1354-1362	2.8	3
125	Single-Particle Spectroscopic Study on Fluorescence Enhancement by Plasmon Coupled Gold Nanorod Dimers Assembled on DNA Origami. <i>Journal of Physical Chemistry Letters</i> , 2015 , 6, 2043-9	6.4	59
124	Plasmon-coupled gold nanospheres for two-photon imaging and photoantibacterial activity. <i>Advanced Healthcare Materials</i> , 2015 , 4, 674-8	10.1	20
123	Production of Monodisperse Gold Nanobipyramids with Number Percentages Approaching 100% and Evaluation of Their Plasmonic Properties. <i>Advanced Optical Materials</i> , 2015 , 3, 801-812	8.1	163
122	Mesoporous SnO2-coated metal nanoparticles with enhanced catalytic efficiency. <i>ACS Applied Materials & Acs Applied Materials & Acc Applied & Acc Applie</i>	9.5	42
121	Colloidal nanocrystals of orthorhombic Cu2ZnGeS4: phase-controlled synthesis, formation mechanism and photocatalytic behavior. <i>Nanoscale</i> , 2015 , 7, 3247-53	7.7	36
120	Study of Linear and Nonlinear Optical Properties of Four Derivatives of Substituted Aryl Hydrazones of 1,8-Naphthalimide. <i>Chinese Journal of Chemistry</i> , 2014 , 32, 205-211	4.9	9
119	Gold nanorod enhanced two-photon excitation fluorescence of photosensitizers for two-photon imaging and photodynamic therapy. ACS Applied Materials & amp; Interfaces, 2014, 6, 2700-8	9.5	126

(2013-2014)

118	Optical sensing of biological, chemical and ionic species through aggregation of plasmonic nanoparticles. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 7460	7.1	177
117	Colloidal synthesis and photocatalytic properties of orthorhombic AgGaS2 nanocrystals. <i>Chemical Communications</i> , 2014 , 50, 7128-31	5.8	39
116	Fine structural tuning of whereabout and clustering of metal-metal oxide heterostructure for optimal photocatalytic enhancement and stability. <i>Nanoscale</i> , 2014 , 6, 12655-64	7.7	18
115	Shape-Dependent Two-Photon Photoluminescence of Single Gold Nanoparticles. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 13904-13911	3.8	84
114	Probing silver deposition on single gold nanorods by their acoustic vibrations. <i>Nano Letters</i> , 2014 , 14, 915-22	11.5	34
113	Conjugated-polymer-based red-emitting nanoparticles for two-photon excitation cell imaging with high contrast. <i>Langmuir</i> , 2014 , 30, 7623-7	4	46
112	Tuning two-photon photoluminescence of gold nanoparticle aggregates with DNA and its application as turn-on photoluminescence probe for DNA sequence detection. <i>ACS Applied Materials & DNA Sequence amp; Interfaces</i> , 2014 , 6, 13149-56	9.5	29
111	A sensitive two-photon probe to selectively detect monoamine oxidase B activity in Parkinson's disease models. <i>Nature Communications</i> , 2014 , 5, 3276	17.4	151
110	A Small-Molecule FRET Reporter for the Real-Time Visualization of Cell-Surface Proteolytic Enzyme Functions. <i>Angewandte Chemie</i> , 2014 , 126, 14585-14590	3.6	21
109	A small-molecule FRET reporter for the real-time visualization of cell-surface proteolytic enzyme functions. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 14357-62	16.4	51
108	Tuning Optical Nonlinearity of Laser-Ablation-Synthesized Silicon Nanoparticles via Doping Concentration. <i>Journal of Nanomaterials</i> , 2014 , 2014, 1-7	3.2	5
107	Damping of acoustic vibrations of immobilized single gold nanorods in different environments. <i>Nano Letters</i> , 2013 , 13, 2710-6	11.5	74
106	Mechanistic investigation of photon upconversion in Nd(3+)-sensitized core-shell nanoparticles. <i>Journal of the American Chemical Society</i> , 2013 , 135, 12608-11	16.4	591
105	Solvent-dependent two-photon photoluminescence and excitation dynamics of gold nanorods. Journal of Physical Chemistry B, 2013 , 117, 15576-83	3.4	22
104	Highly sensitive two-photon sensing of thrombin in serum using aptamers and silver nanoparticles. <i>ACS Applied Materials & District Action (Control of the Action (Control of the Action of the Action</i>	9.5	36
103	Excitation Nature of Two-Photon Photoluminescence of Gold Nanorods and Coupled Gold Nanoparticles Studied by Two-Pulse Emission Modulation Spectroscopy. <i>Journal of Physical Chemistry Letters</i> , 2013 , 4, 1634-8	6.4	69
102	Correlating the plasmonic and structural evolutions during the sulfidation of silver nanocubes. <i>ACS Nano</i> , 2013 , 7, 9354-65	16.7	52
101	A Switchable Two-Photon Membrane Tracer Capable of Imaging Membrane-Associated Protein Tyrosine Phosphatase Activities. <i>Angewandte Chemie</i> , 2013 , 125, 442-446	3.6	20

100	A switchable two-photon membrane tracer capable of imaging membrane-associated protein tyrosine phosphatase activities. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 424-8	16.4	75
99	Capping-agent-free synthesis of substrate-supported porous icosahedral gold nanoparticles. <i>Nanoscale</i> , 2013 , 5, 2983-9	7.7	7
98	The AIEE effect and two-photon absorption (TPA) enhancement induced by polymerization: synthesis of a monomer with ICT and AIE effects and its homopolymer by ATRP and a study of their photophysical properties. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 2599	7.1	60
97	TiO2 coated Au/Ag nanorods with enhanced photocatalytic activity under visible light irradiation. <i>Nanoscale</i> , 2013 , 5, 4236-41	7.7	163
96	Huge enhancement in two-photon photoluminescence of Au nanoparticle clusters revealed by single-particle spectroscopy. <i>Journal of the American Chemical Society</i> , 2013 , 135, 7272-7	16.4	88
95	Facile noninjection synthesis and photocatalytic properties of wurtzite-phase CuGaS2 nanocrystals with elongated morphologies. <i>CrystEngComm</i> , 2013 , 15, 5214	3.3	53
94	Two-photon induced photoluminescence and singlet oxygen generation from aggregated gold nanoparticles. <i>ACS Applied Materials & amp; Interfaces</i> , 2013 , 5, 4972-7	9.5	52
93	Water-Soluble Conjugated Polymers for Simultaneous Two-Photon Cell Imaging and Two-Photon Photodynamic Therapy. <i>Advanced Optical Materials</i> , 2013 , 1, 92-99	8.1	48
92	Colloidal nanocrystals of wurtzite-type Cu2ZnSnS4: facile noninjection synthesis and formation mechanism. <i>Chemistry - A European Journal</i> , 2012 , 18, 3127-31	4.8	130
91	Gold nanorods as dual photo-sensitizing and imaging agents for two-photon photodynamic therapy. <i>Nanoscale</i> , 2012 , 4, 7712-9	7.7	150
90	Enhanced optical properties of graphene oxide-Au nanocrystal composites. <i>Langmuir</i> , 2012 , 28, 321-6	4	65
89	Band-selective coupling-induced enhancement of two-photon photoluminescence in gold nanocubes and its application as turn-on fluorescent probes for cysteine and glutathione. <i>ACS Applied Materials & District Applied & District App</i>	9.5	49
88	Plasmon-enhanced photocatalytic properties of Cu2O nanowire-Au nanoparticle assemblies. <i>Langmuir</i> , 2012 , 28, 12304-10	4	128
87	Graphene Oxides as Tunable Broadband Nonlinear Optical Materials for Femtosecond Laser Pulses. Journal of Physical Chemistry Letters, 2012 , 3, 785-90	6.4	175
86	Organelle-specific detection of phosphatase activities with two-photon fluorogenic probes in cells and tissues. <i>Journal of the American Chemical Society</i> , 2012 , 134, 12157-67	16.4	140
85	Graphene Oxide-Polythiophene Hybrid with Broad-Band Absorption and Photocatalytic Properties. Journal of Physical Chemistry Letters, 2012 , 3, 2332-6	6.4	53
84	Huge enhancement of optical nonlinearities in coupled Au and Ag nanoparticles induced by conjugated polymers. <i>Applied Physics Letters</i> , 2012 , 100, 023106	3.4	18
83	Size-dependent two-photon excitation photoluminescence enhancement in coupled noble-metal nanoparticles. <i>ACS Applied Materials & Samp; Interfaces</i> , 2012 , 4, 4746-51	9.5	52

(2011-2012)

82	Plasmon enhanced upconversion luminescence of NaYF4:Yb,Er@SiO2@Ag core-shell nanocomposites for cell imaging. <i>Nanoscale</i> , 2012 , 4, 5132-7	7.7	219
81	The synthesis and NLO properties of 1,8-naphthalimide derivatives for both femtosecond and nanosecond laser pulses. <i>Dyes and Pigments</i> , 2012 , 94, 271-277	4.6	12
8o	Chemical Interface Damping in Single Gold Nanorods and Its Near Elimination by Tip-Specific Functionalization. <i>Angewandte Chemie</i> , 2012 , 124, 8477-8480	3.6	12
79	Chemical interface damping in single gold nanorods and its near elimination by tip-specific functionalization. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 8352-5	16.4	92
78	Alloyed (ZnS)x(CuInS2)(1-x) semiconductor nanorods: synthesis, bandgap tuning and photocatalytic properties. <i>Chemistry - A European Journal</i> , 2012 , 18, 11258-63	4.8	56
77	SERS under magnetic control. <i>Annalen Der Physik</i> , 2012 , 524, A161-A162	2.6	3
76	One-pot synthesis of Cu1.94S-CdS and Cu1.94S-Zn(x)Cd(1-x)S nanodisk heterostructures. <i>Journal of the American Chemical Society</i> , 2011 , 133, 2052-5	16.4	95
75	Synthesis and characterization of AgInS2InS heterodimers with tunable photoluminescence. <i>Journal of Materials Chemistry</i> , 2011 , 21, 11239		92
74	Multicolor, one- and two-photon imaging of enzymatic activities in live cells with fluorescently Quenched Activity-Based Probes (qABPs). <i>Journal of the American Chemical Society</i> , 2011 , 133, 12009-2	0 ^{16.4}	112
73	Alkylamine capped metal nanoparticle "inks" for printable SERS substrates, electronics and broadband photodetectors. <i>Nanoscale</i> , 2011 , 3, 2268-74	7.7	52
72	Biocompatible glutathione capped gold clusters as one- and two-photon excitation fluorescence contrast agents for live cells imaging. <i>Nanoscale</i> , 2011 , 3, 429-34	7.7	195
71	Preparation of Conductive Silver Films at Mild Temperatures for Printable Organic Electronics. <i>Chemistry of Materials</i> , 2011 , 23, 3273-3276	9.6	63
70	Water-Soluble Conjugated Polymers for Amplification of One- and Two-photon Properties of Photosensitizers. <i>Macromolecules</i> , 2011 , 44, 5373-5380	5.5	38
69	A photostable near-infrared protein labeling dye for in vivo imaging. <i>Chemistry - an Asian Journal</i> , 2011 , 6, 1353-7	4.5	21
68	Monolayer graphene as a saturable absorber in a mode-locked laser. <i>Nano Research</i> , 2011 , 4, 297-307	10	322
67	Octupolar polycyclic aromatic hydrocarbons as new two-photon absorption chromophores: synthesis and application for optical power limiting. <i>Chemistry - A European Journal</i> , 2011 , 17, 3837-41	4.8	31
66	Tetracene-doped anthracene nanowire arrays: preparation and doping effects. <i>Langmuir</i> , 2011 , 27, 637	4480	12
65	Radially oriented anthracene nanowire arrays: preparation, growth mechanism, and optical fluorescence. <i>Nanoscale</i> , 2011 , 3, 1855-60	7.7	9

64	Refractive Index Sensitivities of Noble Metal Nanocrystals: The Effects of Multipolar Plasmon Resonances and the Metal Type. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 7997-8004	3.8	103
63	Metal ion-modulated graphene-DNAzyme interactions: design of a nanoprobe for fluorescent detection of lead(II) ions with high sensitivity, selectivity and tunable dynamic range. <i>Chemical Communications</i> , 2011 , 47, 6278-80	5.8	155
62	Two-photon ratiometric sensing of Hg2+ by using cysteine functionalized Ag nanoparticles. <i>Nanoscale</i> , 2011 , 3, 3316-20	7.7	67
61	Excitation wavelength and fluence dependent femtosecond transient absorption studies on electron dynamics of gold nanorods. <i>Journal of Physical Chemistry A</i> , 2011 , 115, 3820-6	2.8	30
60	Bimetallic Au/Ag CoreBhell Nanorods Studied by Ultrafast Transient Absorption Spectroscopy under Selective Excitation. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 14000-14005	3.8	29
59	One- and two-photon live cell imaging using a mutant SNAP-Tag protein and its FRET substrate pairs. <i>Organic Letters</i> , 2011 , 13, 4160-3	6.2	38
58	Rapid synthesis of highly monodisperse Au(x)Ag(1-x) alloy nanoparticles via a half-seeding approach. <i>Langmuir</i> , 2011 , 27, 5633-43	4	21
57	Enhanced two-photon singlet oxygen generation by photosensitizer-doped conjugated polymer nanoparticles. <i>Langmuir</i> , 2011 , 27, 1739-44	4	77
56	Synthesis and characterizations of star-shaped octupolar triazatruxenes-based two-photon absorption chromophores. <i>Journal of Organic Chemistry</i> , 2011 , 76, 780-90	4.2	103
55	Photosensitizer-doped conjugated polymer nanoparticles for simultaneous two-photon imaging and two-photon photodynamic therapy in living cells. <i>Nanoscale</i> , 2011 , 3, 5140-6	7.7	104
54	?Static and ultrafast dynamics of defects of SrTiO3 in LaAlO3/SrTiO3 heterostructures. <i>Applied Physics Letters</i> , 2011 , 98, 081916	3.4	17
53	Defect dynamics and spectral observation of twinning in single crystalline LaAlO3 under subbandgap excitation. <i>Applied Physics Letters</i> , 2011 , 98, 041904	3.4	19
52	RECENT ADVANCES IN METAL-ENHANCED OPTICAL PROPERTIES. Cosmos, 2010, 06, 167-195		5
51	Transient photoconductivity and femtosecond nonlinear optical properties of a conjugated polymer-graphene oxide composite. <i>Nanotechnology</i> , 2010 , 21, 415203	3.4	36
50	Enhanced nonlinear optical responses in donor-acceptor ionic complexes via photo induced energy transfer. <i>Optics Express</i> , 2010 , 18, 25928-35	3.3	35
49	Enhanced two-photon emission in coupled metal nanoparticles induced by conjugated polymers. <i>Langmuir</i> , 2010 , 26, 18020-3	4	66
48	N-annulated perylene fused porphyrins with enhanced near-IR absorption and emission. <i>Organic Letters</i> , 2010 , 12, 4046-9	6.2	80
47	Nanocomposites containing gold nanorods and porphyrin-doped mesoporous silica with dual capability of two-photon imaging and photosensitization. <i>Langmuir</i> , 2010 , 26, 14937-42	4	89

(2008-2010)

46	Direct visualization of conformational switch of i-motif DNA with a cationic conjugated polymer. <i>Chemistry - an Asian Journal</i> , 2010 , 5, 1094-8	4.5	15
45	A Graphene OxideDrganic Dye Ionic Complex with DNA-Sensing and Optical-Limiting Properties. <i>Angewandte Chemie</i> , 2010 , 122, 6699-6703	3.6	89
44	A graphene oxide-organic dye ionic complex with DNA-sensing and optical-limiting properties. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 6549-53	16.4	283
43	Fluorescent Nanogel of Arsenic Sulfide Nanoclusters. <i>Angewandte Chemie</i> , 2009 , 121, 6400-6403	3.6	4
42	Enhanced One- and Two-Photon Excitation Emission of a Porphyrin Photosensitizer by FRET from a Conjugated Polyelectrolyte. <i>Macromolecular Rapid Communications</i> , 2009 , 30, 504-8	4.8	29
41	Fluorescent nanogel of arsenic sulfide nanoclusters. <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 6282-5	16.4	40
40	Stable and functionable mesoporous silica-coated gold nanorods as sensitive localized surface plasmon resonance (LSPR) nanosensors. <i>Langmuir</i> , 2009 , 25, 9441-6	4	117
39	Optical-limiting properties of oleylamine-capped gold nanoparticles for both femtosecond and nanosecond laser pulses. <i>ACS Applied Materials & District Sciences</i> , 2009 , 1, 2298-303	9.5	98
38	Highly sensitive and selective detection of mercury ions by using oligonucleotides, DNA intercalators, and conjugated polymers. <i>Langmuir</i> , 2009 , 25, 29-31	4	75
37	Nonlinear optical switching behavior of Au nanocubes and nano-octahedra investigated by femtosecond Z-scan measurements. <i>Applied Physics Letters</i> , 2009 , 95, 023105	3.4	81
36	A simple method for large scale synthesis of highly monodisperse gold nanoparticles at room temperature and their electron relaxation properties. <i>Nanotechnology</i> , 2009 , 20, 185606	3.4	58
35	Label-free DNA sequence detection with enhanced sensitivity and selectivity using cationic conjugated polymers and PicoGreen. <i>Langmuir</i> , 2009 , 25, 43-7	4	57
34	One- and two-photon turn-on fluorescent probe for cysteine and homocysteine with large emission shift. <i>Organic Letters</i> , 2009 , 11, 1257-60	6.2	155
33	Multifunctional core-shell nanoparticles as highly efficient imaging and photosensitizing agents. <i>Langmuir</i> , 2009 , 25, 10153-8	4	79
32	A single-step synthesis of gold nanochains using an amino acid as a capping agent and characterization of their optical properties. <i>Nanotechnology</i> , 2008 , 19, 075601	3.4	69
31	Optical limiting properties of silver nanoprisms. <i>Applied Physics Letters</i> , 2008 , 92, 263110	3.4	46
30	Water-soluble conjugated polymer-induced self-assembly of gold nanoparticles and its application to SERS. <i>Langmuir</i> , 2008 , 24, 10608-11	4	138
29	Light scattering and luminescence studies on self-aggregation behavior of amphiphilic copolymer micelles. <i>Journal of Physical Chemistry B</i> , 2008 , 112, 749-55	3.4	19

28	Synthesis and Structure Property Investigation of Polyarenes with Conjugated Side Chains. <i>Macromolecules</i> , 2008 , 41, 8473-8482	5.5	9
27	Arsenic(II) sulfide quantum dots prepared by a wet process from its bulk. <i>Journal of the American Chemical Society</i> , 2008 , 130, 11596-7	16.4	30
26	Separation distance dependent fluorescence enhancement of fluorescein isothiocyanate by silver nanoparticles. <i>Chemical Communications</i> , 2007 , 248-50	5.8	171
25	Ultrafast Spectroscopic Study of Photoinduced Electron Transfer in an Oligo(thienylenevinylene):Fullerene Composite. <i>Advanced Functional Materials</i> , 2007 , 17, 563-568	15.6	45
24	Enhanced Two-Photon Excitation Fluorescence by Fluorescence Resonance Energy Transfer Using Conjugated Polymers. <i>Advanced Materials</i> , 2007 , 19, 1988-1991	24	47
23	Single Base Pair Mismatch Detection Using Cationic Conjugated Polymers through Fluorescence Resonance Energy Transfer. <i>Macromolecular Rapid Communications</i> , 2007 , 28, 729-732	4.8	22
22	Charge-carrier relaxation dynamics in highly ordered poly(p-phenylene vinylene): Effects of carrier bimolecular recombination and trapping. <i>Physical Review B</i> , 2005 , 72,	3.3	69
21	The fluorescence resonance energy transfer (FRET) gate: a time-resolved study. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2005 , 102, 530-5	11.5	95
20	Delayed emission from recombination of charge-separated pairs on polyfluorene chains in dilute solution. <i>Physical Review B</i> , 2004 , 69,	3.3	5
19	Time-resolved energy transfer in DNA sequence detection using water-soluble conjugated polymers: the role of electrostatic and hydrophobic interactions. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2004 , 101, 11634-9	11.5	101
18	Time-resolved measurements of photoinduced electron transfer from polyfluorene to C60. <i>Physical Review B</i> , 2003 , 67,	3.3	16
17	Direct observation of a time-delayed intermediate state generated via exciton-exciton annihilation in polyfluorene. <i>Physical Review B</i> , 2003 , 68,	3.3	12
16	Optical Heterodyne Detected Transient Grating (OHD-TG) Studies on the Reactive and Non-reactive Resonant Systems. <i>Springer Series in Chemical Physics</i> , 2003 , 420-422	0.3	
15	Separation of contributions to the third-order signal: ultrafast frequency-selected vibrational echo experiments on a metalloporphyrin-CO. <i>Chemical Physics Letters</i> , 2002 , 355, 139-146	2.5	5
14	Wavelength-dependent resonant homodyne and heterodyne transient grating spectroscopy with a diffractive optics method: Solvent effect on the third-order signal. <i>Journal of Chemical Physics</i> , 2002 , 116, 9333-9340	3.9	32
_ 	Frequency Selected Ultrafast Infrared Vibrational Echo Studies of Liquids, Glasses, and Proteins.	2.8	21
13	Journal of Physical Chemistry A, 2002 , 106, 8839-8849	2.0	
13	Journal of Physical Chemistry A, 2002, 106, 8839-8849 Different Real and Imaginary Components of the Resonant Third-Order Polarization Revealed by Optical Heterodyne Detected Transient Grating Spectroscopic Studies of Crystal Violet:□Model and Experiment□ Journal of Physical Chemistry A, 2002, 106, 10755-10763	2.8	20

LIST OF PUBLICATIONS

10	Myoglobin-CO conformational substate dynamics: 2D vibrational echoes and MD simulations. <i>Biophysical Journal</i> , 2002 , 82, 3277-88	2.9	49
9	Heterodyne detected transient grating spectroscopy in resonant and non-resonant systems using a simplified diffractive optics method. <i>Chemical Physics Letters</i> , 2001 , 338, 254-262	2.5	57
8	Influence of intramolecular vibrations in third-order, time-domain resonant spectroscopies. I. Experiments. <i>Journal of Chemical Physics</i> , 2001 , 114, 8008-8019	3.9	82
7	Three Pulse Photon Echo Peak Shift Study of the B800 Band of the LH2 Complex of Rps. acidophila at Room Temperature: A Coupled Master Equation and Nonlinear Optical Response Function Approach. <i>Journal of Physical Chemistry B</i> , 2001 , 105, 1887-1894	3.4	55
6	Isomerization Dynamics of 1,1EDiethyl-4,4ECyanine (1144C) Studied by Different Third-Order Nonlinear Spectroscopic Measurements. <i>Journal of Physical Chemistry A</i> , 2001 , 105, 10187-10195	2.8	34
5	Probing Solvation and Reaction Coordinates of Ultrafast Photoinduced Electron-Transfer Reactions Using Nonlinear Spectroscopies: Rhodamine 6G in Electron-Donating Solvents Journal of Physical Chemistry A, 1999, 103, 10348-10358	2.8	70
4	Multidimensional nanoscopic chiroptics. Nature Reviews Physics,	23.6	14
3	Transient Reflection Spectroscopy on Ultrafast Interlayer Charge Transfer Processes in a MoS2/WSe2 van der Waals Heterojunction. <i>Journal of Physical Chemistry C</i> ,	3.8	1
2	Plasmon-enhanced light harvesting: applications in enhanced photocatalysis, photodynamic therapy and photovoltaics		1
1	A Systematic Study of Laser-Engineered Fluorescence in Carbon Black. <i>Advanced Photonics Research</i> ,21	00.1,80	