Qing-Hua Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4384288/publications.pdf

Version: 2024-02-01

242 papers 16,408 citations

9756 73 h-index 20307 116 g-index

258 all docs 258 docs citations

258 times ranked

23043 citing authors

#	Article	IF	CITATIONS
1	Mechanistic Investigation of Photon Upconversion in Nd ³⁺ -Sensitized Core–Shell Nanoparticles. Journal of the American Chemical Society, 2013, 135, 12608-12611.	6.6	682
2	Development of Targetable Two-Photon Fluorescent Probes to Image Hypochlorous Acid in Mitochondria and Lysosome in Live Cell and Inflamed Mouse Model. Journal of the American Chemical Society, 2015, 137, 5930-5938.	6.6	472
3	Monolayer graphene as a saturable absorber in a mode-locked laser. Nano Research, 2011, 4, 297-307.	5.8	408
4	Self-surface charge exfoliation and electrostatically coordinated 2D hetero-layered hybrids. Nature Communications, 2017, 8, 14224.	5 . 8	318
5	A Graphene Oxide–Organic Dye Ionic Complex with DNAâ€Sensing and Opticalâ€Limiting Properties. Angewandte Chemie - International Edition, 2010, 49, 6549-6553.	7.2	304
6	Molecularly thin two-dimensional hybrid perovskites with tunable optoelectronic properties due to reversible surface relaxation. Nature Materials, 2018, 17, 908-914.	13.3	295
7	Vapour–liquid–solid growth of monolayer MoS2 nanoribbons. Nature Materials, 2018, 17, 535-542.	13.3	286
8	Plasmon enhanced upconversion luminescence of NaYF4:Yb,Er@SiO2@Ag core–shell nanocomposites for cell imaging. Nanoscale, 2012, 4, 5132.	2.8	250
9	Tuneable near white-emissive two-dimensional covalent organic frameworks. Nature Communications, 2018, 9, 2335.	5.8	230
10	Production of Monodisperse Gold Nanobipyramids with Number Percentages Approaching 100% and Evaluation of Their Plasmonic Properties. Advanced Optical Materials, 2015, 3, 801-812.	3.6	215
11	Biocompatible glutathione capped gold clusters as one- and two-photon excitation fluorescence contrast agents for live cells imaging. Nanoscale, 2011, 3, 429-434.	2.8	209
12	Graphene Oxides as Tunable Broadband Nonlinear Optical Materials for Femtosecond Laser Pulses. Journal of Physical Chemistry Letters, 2012, 3, 785-790.	2.1	202
13	Optical sensing of biological, chemical and ionic species through aggregation of plasmonic nanoparticles. Journal of Materials Chemistry C, 2014, 2, 7460.	2.7	201
14	Plasmon-enhanced light harvesting: applications in enhanced photocatalysis, photodynamic therapy and photovoltaics. RSC Advances, 2015, 5, 29076-29097.	1.7	196
15	20.7% highly reproducible inverted planar perovskite solar cells with enhanced fill factor and eliminated hysteresis. Energy and Environmental Science, 2019, 12, 1622-1633.	15.6	193
16	Photoinduced Nickel-Catalyzed Chemo- and Regioselective Hydroalkylation of Internal Alkynes with Ether and Amide α-Hetero C(sp ³)â€"H Bonds. Journal of the American Chemical Society, 2017, 13579-13584.	6.6	192
17	Separation distance dependent fluorescence enhancement of fluorescein isothiocyanate by silver nanoparticles. Chemical Communications, 2007, , 248-250.	2.2	190
18	TiO2 coated Au/Ag nanorods with enhanced photocatalytic activity under visible light irradiation. Nanoscale, 2013, 5, 4236.	2.8	176

#	Article	IF	CITATIONS
19	A sensitive two-photon probe to selectively detect monoamine oxidase B activity in Parkinson's disease models. Nature Communications, 2014, 5, 3276.	5.8	175
20	Gold nanorods as dual photo-sensitizing and imaging agents for two-photon photodynamic therapy. Nanoscale, 2012, 4, 7712.	2.8	168
21	Metal ion-modulated graphene-DNAzyme interactions: design of a nanoprobe for fluorescent detection of lead(ii) ions with high sensitivity, selectivity and tunable dynamic range. Chemical Communications, 2011, 47, 6278.	2.2	166
22	One- and Two-Photon Turn-on Fluorescent Probe for Cysteine and Homocysteine with Large Emission Shift. Organic Letters, 2009, 11, 1257-1260.	2.4	159
23	Organelle-Specific Detection of Phosphatase Activities with Two-Photon Fluorogenic Probes in Cells and Tissues. Journal of the American Chemical Society, 2012, 134, 12157-12167.	6.6	155
24	Ultrathin two-dimensional porous organic nanosheets with molecular rotors for chemical sensing. Nature Communications, 2017, 8, 1142.	5.8	152
25	Size-dependent nonlinear optical properties of black phosphorus nanosheets and their applications in ultrafast photonics. Journal of Materials Chemistry C, 2017, 5, 3007-3013.	2.7	150
26	Water-Soluble Conjugated Polymer-Induced Self-Assembly of Gold Nanoparticles and Its Application to SERS. Langmuir, 2008, 24, 10608-10611.	1.6	145
27	Metal Nanoparticles for Diagnosis and Therapy of Bacterial Infection. Advanced Healthcare Materials, 2018, 7, e1701392.	3.9	145
28	Homogeneous Carbon/Potassiumâ€Incorporation Strategy for Synthesizing Red Polymeric Carbon Nitride Capable of Nearâ€Infrared Photocatalytic H ₂ Production. Advanced Materials, 2021, 33, e2101455.	11.1	144
29	Gold Nanorod Enhanced Two-Photon Excitation Fluorescence of Photosensitizers for Two-Photon Imaging and Photodynamic Therapy. ACS Applied Materials & Empty Interfaces, 2014, 6, 2700-2708.	4.0	143
30	Enhancing the photovoltaic performance of planar heterojunction perovskite solar cells by doping the perovskite layer with alkali metal ions. Journal of Materials Chemistry A, 2016, 4, 16546-16552.	5.2	143
31	Plasmon-Enhanced Photocatalytic Properties of Cu ₂ O Nanowire–Au Nanoparticle Assemblies. Langmuir, 2012, 28, 12304-12310.	1.6	142
32	Colloidal Nanocrystals of Wurtziteâ€Type Cu ₂ ZnSnS ₄ : Facile Noninjection Synthesis and Formation Mechanism. Chemistry - A European Journal, 2012, 18, 3127-3131.	1.7	138
33	Boosting the performance of planar heterojunction perovskite solar cell by controlling the precursor purity of perovskite materials. Journal of Materials Chemistry A, 2016, 4, 887-893.	5.2	137
34	Gate-Tunable In-Plane Ferroelectricity in Few-Layer SnS. Nano Letters, 2019, 19, 5109-5117.	4.5	129
35	Stable and Functionable Mesoporous Silica-Coated Gold Nanorods as Sensitive Localized Surface Plasmon Resonance (LSPR) Nanosensors. Langmuir, 2009, 25, 9441-9446.	1.6	127
36	Multicolor, One- and Two-Photon Imaging of Enzymatic Activities in Live Cells with Fluorescently Quenched Activity-Based Probes (qABPs). Journal of the American Chemical Society, 2011, 133, 12009-12020.	6.6	124

#	Article	IF	CITATIONS
37	Controllable deuteration of halogenated compounds by photocatalytic D2O splitting. Nature Communications, 2018, 9, 80.	5.8	123
38	Optical-Limiting Properties of Oleylamine-Capped Gold Nanoparticles for Both Femtosecond and Nanosecond Laser Pulses. ACS Applied Materials & Samp; Interfaces, 2009, 1, 2298-2303.	4.0	118
39	Chemical Interface Damping in Single Gold Nanorods and Its Near Elimination by Tipâ€Specific Functionalization. Angewandte Chemie - International Edition, 2012, 51, 8352-8355.	7.2	115
40	Refractive Index Sensitivities of Noble Metal Nanocrystals: The Effects of Multipolar Plasmon Resonances and the Metal Type. Journal of Physical Chemistry C, 2011, 115, 7997-8004.	1.5	113
41	Photosensitizer-doped conjugated polymer nanoparticles for simultaneous two-photon imaging and two-photon photodynamic therapy in living cells. Nanoscale, 2011, 3, 5140.	2.8	113
42	Ferroelectricity and Rashba Effect in a Two-Dimensional Dion-Jacobson Hybrid Organic–Inorganic Perovskite. Journal of the American Chemical Society, 2019, 141, 15972-15976.	6.6	113
43	Synthesis and Characterizations of Star-Shaped Octupolar Triazatruxenes-Based Two-Photon Absorption Chromophores. Journal of Organic Chemistry, 2011, 76, 780-790.	1.7	108
44	Ultralow-threshold multiphoton-pumped lasing from colloidal nanoplatelets in solution. Nature Communications, 2015, 6, 8513.	5.8	108
45	Ultrathin nickel boron oxide nanosheets assembled vertically on graphene: a new hybrid 2D material for enhanced photo/electro-catalysis. Materials Horizons, 2017, 4, 885-894.	6.4	108
46	Time-resolved energy transfer in DNA sequence detection using water-soluble conjugated polymers: The role of electrostatic and hydrophobic interactions. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 11634-11639.	3.3	104
47	The fluorescence resonance energy transfer (FRET) gate: A time-resolved study. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 530-535.	3.3	103
48	One-Pot Synthesis of Cu _{1.94} Sâ^'CdS and Cu _{1.94} Sâ^'Zn _{<i>x</i>} Cd _{1â^'<i>x</i>} S Nanodisk Heterostructures. Journal of the American Chemical Society, 2011, 133, 2052-2055.	6.6	103
49	Huge Enhancement in Two-Photon Photoluminescence of Au Nanoparticle Clusters Revealed by Single-Particle Spectroscopy. Journal of the American Chemical Society, 2013, 135, 7272-7277.	6.6	100
50	Disorder Engineering in Monolayer Nanosheets Enabling Photothermic Catalysis for Full Solar Spectrum (250–2500 nm) Harvesting. Angewandte Chemie - International Edition, 2019, 58, 3077-3081.	7.2	100
51	Selectively Plasmon-Enhanced Second-Harmonic Generation from Monolayer Tungsten Diselenide on Flexible Substrates. ACS Nano, 2018, 12, 1859-1867.	7.3	97
52	Nanocomposites Containing Gold Nanorods and Porphyrin-Doped Mesoporous Silica with Dual Capability of Two-Photon Imaging and Photosensitization. Langmuir, 2010, 26, 14937-14942.	1.6	95
53	Synthesis and characterization of AgInS2–ZnS heterodimers with tunable photoluminescence. Journal of Materials Chemistry, 2011, 21, 11239.	6.7	95
54	4-Diphenylamino-phenyl substituted pyrazine: nonlinear optical switching by protonation. Journal of Materials Chemistry C, 2015, 3, 9191-9196.	2.7	93

#	Article	IF	Citations
55	Damping of Acoustic Vibrations of Immobilized Single Gold Nanorods in Different Environments. Nano Letters, 2013, 13, 2710-2716.	4.5	92
56	Shape-Dependent Two-Photon Photoluminescence of Single Gold Nanoparticles. Journal of Physical Chemistry C, 2014, 118, 13904-13911.	1.5	92
57	<i>N</i> -Annulated Perylene Fused Porphyrins with Enhanced Near-IR Absorption and Emission. Organic Letters, 2010, 12, 4046-4049.	2.4	91
58	Self-Powered Photodetector Using Two-Dimensional Ferroelectric Dion–Jacobson Hybrid Perovskites. Journal of the American Chemical Society, 2020, 142, 18592-18598.	6.6	90
59	Nonlinear optical switching behavior of Au nanocubes and nano-octahedra investigated by femtosecond Z-scan measurements. Applied Physics Letters, 2009, 95, .	1.5	89
60	Multifunctional Coreâ^'Shell Nanoparticles as Highly Efficient Imaging and Photosensitizing Agents. Langmuir, 2009, 25, 10153-10158.	1.6	88
61	A Switchable Twoâ€Photon Membrane Tracer Capable of Imaging Membraneâ€Associated Protein Tyrosine Phosphatase Activities. Angewandte Chemie - International Edition, 2013, 52, 424-428.	7.2	88
62	Multidimensional nanoscopic chiroptics. Nature Reviews Physics, 2022, 4, 113-124.	11.9	87
63	Enhancing the planar heterojunction perovskite solar cell performance through tuning the precursor ratio. Journal of Materials Chemistry A, 2016, 4, 7943-7949.	5.2	86
64	Polymer-Assisted In Situ Growth of All-Inorganic Perovskite Nanocrystal Film for Efficient and Stable Pure-Red Light-Emitting Devices. ACS Applied Materials & Interfaces, 2018, 10, 42564-42572.	4.0	86
65	Influence of intramolecular vibrations in third-order, time-domain resonant spectroscopies. I. Experiments. Journal of Chemical Physics, 2001, 114, 8008-8019.	1.2	83
66	Au-Ag core-shell nanoparticles for simultaneous bacterial imaging and synergistic antibacterial activity. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 297-305.	1.7	83
67	Ï€â€Extended Conjugated Polymer Acceptor Containing Thienylene–Vinylene–Thienylene Unit for Highâ€Performance Thickâ€Film Allâ€Polymer Solar Cells with Superior Longâ€Term Stability. Advanced Energy Materials, 2021, 11, 2102559.	10.2	83
68	Probing Solvation and Reaction Coordinates of Ultrafast Photoinduced Electron-Transfer Reactions Using Nonlinear Spectroscopies: Rhodamine 6G in Electron-Donating Solventsâ€. Journal of Physical Chemistry A, 1999, 103, 10348-10358.	1,1	82
69	Enhanced Two-Photon Singlet Oxygen Generation by Photosensitizer-Doped Conjugated Polymer Nanoparticles. Langmuir, 2011, 27, 1739-1744.	1.6	82
70	Excitation Nature of Two-Photon Photoluminescence of Gold Nanorods and Coupled Gold Nanoparticles Studied by Two-Pulse Emission Modulation Spectroscopy. Journal of Physical Chemistry Letters, 2013, 4, 1634-1638.	2.1	79
71	A single-step synthesis of gold nanochains using an amino acid as a capping agent and characterization of their optical properties. Nanotechnology, 2008, 19, 075601.	1.3	77
72	Highly Sensitive and Selective Detection of Mercury Ions by Using Oligonucleotides, DNA Intercalators, and Conjugated Polymers. Langmuir, 2009, 25, 29-31.	1.6	77

#	Article	IF	Citations
73	Charge-carrier relaxation dynamics in highly ordered poly(p-phenylene vinylene): Effects of carrier bimolecular recombination and trapping. Physical Review B, 2005, 72, .	1.1	74
74	Enhanced Optical Properties of Graphene Oxide–Au Nanocrystal Composites. Langmuir, 2012, 28, 321-326.	1.6	73
75	Preparation of Conductive Silver Films at Mild Temperatures for Printable Organic Electronics. Chemistry of Materials, 2011, 23, 3273-3276.	3.2	71
76	Two-photon ratiometric sensing of Hg2+ by using cysteine functionalized Ag nanoparticles. Nanoscale, 2011, 3, 3316.	2.8	69
77	Single-Particle Spectroscopic Study on Fluorescence Enhancement by Plasmon Coupled Gold Nanorod Dimers Assembled on DNA Origami. Journal of Physical Chemistry Letters, 2015, 6, 2043-2049.	2.1	69
78	The AIEE effect and two-photon absorption (TPA) enhancement induced by polymerization: synthesis of a monomer with ICT and AIE effects and its homopolymer by ATRP and a study of their photophysical properties. Journal of Materials Chemistry C, 2013, 1, 2599.	2.7	67
79	Enhanced Two-Photon Emission in Coupled Metal Nanoparticles Induced by Conjugated Polymers. Langmuir, 2010, 26, 18020-18023.	1.6	66
80	Two-Photon Induced Photoluminescence and Singlet Oxygen Generation from Aggregated Gold Nanoparticles. ACS Applied Materials & Samp; Interfaces, 2013, 5, 4972-4977.	4.0	65
81	Actively Tunable Visible Surface Plasmons in Bi ₂ Te ₃ and their Energyâ€Harvesting Applications. Advanced Materials, 2016, 28, 3138-3144.	11.1	65
82	Heterodyne detected transient grating spectroscopy in resonant and non-resonant systems using a simplified diffractive optics method. Chemical Physics Letters, 2001, 338, 254-262.	1.2	64
83	High performance planar perovskite solar cells with a perovskite of mixed organic cations and mixed halides, MA _{1â°'x} FA _x PbI _{3â°'y} Cl _y . Journal of Materials Chemistry A, 2016, 4, 12543-12553.	5.2	64
84	Electron transport and visible light absorption in a plasmonic photocatalyst based on strontium niobate. Nature Communications, 2017, 8, 15070.	5.8	64
85	A simple method for large scale synthesis of highly monodisperse gold nanoparticles at room temperature and their electron relaxation properties. Nanotechnology, 2009, 20, 185606.	1.3	63
86	A Smallâ€Molecule FRET Reporter for the Realâ€Time Visualization of Cellâ€Surface Proteolytic Enzyme Functions. Angewandte Chemie - International Edition, 2014, 53, 14357-14362.	7.2	63
87	Giant Emission Enhancement of Solidâ€ S tate Gold Nanoclusters by Surface Engineering. Angewandte Chemie - International Edition, 2020, 59, 8270-8276.	7.2	63
88	Self-Template Synthesis of Porous Perovskite Titanate Solid and Hollow Submicrospheres for Photocatalytic Oxygen Evolution and Mesoscopic Solar Cells. ACS Applied Materials & Samp; Interfaces, 2015, 7, 14859-14869.	4.0	62
89	Graphene Oxide–Polythiophene Hybrid with Broad-Band Absorption and Photocatalytic Properties. Journal of Physical Chemistry Letters, 2012, 3, 2332-2336.	2.1	61
90	Alloyed (ZnS) _{<i>x</i>} (CuInS ₂) _{1â^'<i>x</i>} Semiconductor Nanorods: Synthesis, Bandgap Tuning and Photocatalytic Properties. Chemistry - A European Journal, 2012, 18, 11258-11263.	1.7	60

#	Article	IF	Citations
91	A Simple BODIPY-Based Viscosity Probe for Imaging of Cellular Viscosity in Live Cells. Sensors, 2016, 16, 1397.	2.1	60
92	Inverse Stellation of CuAu-ZnO Multimetallic-Semiconductor Nanostartube for Plasmon-Enhanced Photocatalysis. ACS Nano, 2018, 12, 4512-4520.	7.3	60
93	Label-Free DNA Sequence Detection with Enhanced Sensitivity and Selectivity Using Cationic Conjugated Polymers and PicoGreen. Langmuir, 2009, 25, 43-47.	1.6	59
94	Size-Dependent Two-Photon Excitation Photoluminescence Enhancement in Coupled Noble-Metal Nanoparticles. ACS Applied Materials & Samp; Interfaces, 2012, 4, 4746-4751.	4.0	59
95	Three Pulse Photon Echo Peak Shift Study of the B800 Band of the LH2 Complex of Rps. acidophila at Room Temperature:  A Coupled Master Equation and Nonlinear Optical Response Function Approach. Journal of Physical Chemistry B, 2001, 105, 1887-1894.	1.2	58
96	Facile noninjection synthesis and photocatalytic properties of wurtzite-phase CuGaS2 nanocrystals with elongated morphologies. CrystEngComm, 2013, 15, 5214.	1.3	58
97	Correlating the Plasmonic and Structural Evolutions during the Sulfidation of Silver Nanocubes. ACS Nano, 2013, 7, 9354-9365.	7.3	57
98	Tunable Broadband Nonlinear Optical Properties of Black Phosphorus Quantum Dots for Femtosecond Laser Pulses. Materials, 2017, 10, 210.	1.3	56
99	Highly Stable Twoâ€Dimensional Tin(II) Iodide Hybrid Organic–Inorganic Perovskite Based on Stilbene Derivative. Advanced Functional Materials, 2019, 29, 1904810.	7.8	55
100	Band-Selective Coupling-Induced Enhancement of Two-Photon Photoluminescence in Gold Nanocubes and Its Application as Turn-on Fluorescent Probes for Cysteine and Glutathione. ACS Applied Materials & Eamp; Interfaces, 2012, 4, 5711-5716.	4.0	54
101	Waterâ€Soluble Conjugated Polymers for Simultaneous Twoâ€Photon Cell Imaging and Twoâ€Photon Photodynamic Therapy. Advanced Optical Materials, 2013, 1, 92-99.	3.6	54
102	Alkylamine capped metal nanoparticle "inks―for printable SERS substrates, electronics and broadband photodetectors. Nanoscale, 2011, 3, 2268.	2.8	53
103	Highly Efficient, Conjugatedâ€Polymerâ€Based Nanoâ€Photosensitizers for Selectively Targeted Twoâ€Photon Photodynamic Therapy and Imaging of Cancer Cells. Chemistry - A European Journal, 2015, 21, 2214-2221.	1.7	53
104	Myoglobin-CO Conformational Substate Dynamics: 2D Vibrational Echoes and MD Simulations. Biophysical Journal, 2002, 82, 3277-3288.	0.2	52
105	Optical limiting properties of silver nanoprisms. Applied Physics Letters, 2008, 92, .	1.5	52
106	Graphene Nanobubbles: A New Optical Nonlinear Material. Advanced Optical Materials, 2015, 3, 744-749.	3.6	52
107	Mesoporous SnO ₂ -Coated Metal Nanoparticles with Enhanced Catalytic Efficiency. ACS Applied Materials & Distriction (1988) Ap	4.0	52
108	Giant Enhancement of Second Harmonic Generation Accompanied by the Structural Transformation of 7â€Fold to 8â€Fold Interpenetrated Metal–Organic Frameworks (MOFs). Angewandte Chemie - International Edition, 2020, 59, 833-838.	7.2	52

#	Article	IF	Citations
109	In Situ Synthesis of Lead-Free Halide Perovskite Cs ₂ AgBiBr ₆ Supported on Nitrogen-Doped Carbon for Efficient Hydrogen Evolution in Aqueous HBr Solution. ACS Applied Materials & Samp; Interfaces, 2021, 13, 10037-10046.	4.0	52
110	Enhanced Twoâ€Photon Excitation Fluorescence by Fluorescence Resonance Energy Transfer Using Conjugated Polymers. Advanced Materials, 2007, 19, 1988-1991.	11.1	50
111	Red-Emitting DPSB-Based Conjugated Polymer Nanoparticles with High Two-Photon Brightness for Cell Membrane Imaging. ACS Applied Materials & Samp; Interfaces, 2015, 7, 6754-6763.	4.0	50
112	Conjugated-Polymer-Based Red-Emitting Nanoparticles for Two-Photon Excitation Cell Imaging with High Contrast. Langmuir, 2014, 30, 7623-7627.	1.6	48
113	Alloyed ZnS–CuInS ₂ Semiconductor Nanorods and Their Nanoscale Heterostructures for Visibleâ€Lightâ€Driven Photocatalytic Hydrogen Generation. Chemistry - A European Journal, 2015, 21, 9514-9519.	1.7	47
114	Gold nanorod enhanced conjugated polymer/photosensitizer composite nanoparticles for simultaneous two-photon excitation fluorescence imaging and photodynamic therapy. Nanoscale, 2019, 11, 19551-19560.	2.8	47
115	Ultrafast Spectroscopic Study of Photoinduced Electron Transfer in an Oligo(thienylenevinylene):Fullerene Composite. Advanced Functional Materials, 2007, 17, 563-568.	7.8	46
116	Fluorescent Nanogel of Arsenic Sulfide Nanoclusters. Angewandte Chemie - International Edition, 2009, 48, 6282-6285.	7.2	46
117	Visible-light-induced living radical polymerization using in situ bromine-iodine transformation as an internal boost. Polymer Chemistry, 2017, 8, 2538-2551.	1.9	46
118	Photocatalytic Hydrogen Evolution under Ambient Conditions on Polymeric Carbon Nitride/Donor â€Acceptor Organic Molecule Heterostructures. Advanced Functional Materials, 2020, 30, 2005106.	7.8	46
119	Colloidal synthesis and photocatalytic properties of orthorhombic AgGaS2 nanocrystals. Chemical Communications, 2014, 50, 7128.	2.2	45
120	Photoactive PDI–Cobalt Complex Immobilized on Reduced Graphene Oxide for Photoelectrochemical Water Splitting. ACS Applied Materials & Interfaces, 2015, 7, 880-886.	4.0	45
121	One- and Two-Photon Live Cell Imaging Using a Mutant SNAP-Tag Protein and Its FRET Substrate Pairs. Organic Letters, 2011, 13, 4160-4163.	2.4	44
122	Enhanced nonlinear optical responses in donor-acceptor ionic complexes via photo induced energy transfer. Optics Express, 2010, 18, 25928.	1.7	43
123	Probing Silver Deposition on Single Gold Nanorods by Their Acoustic Vibrations. Nano Letters, 2014, 14, 915-922.	4.5	43
124	Elucidating the charge carrier transport and extraction in planar heterojunction perovskite solar cells by Kelvin probe force microscopy. Journal of Materials Chemistry A, 2016, 4, 17464-17472.	5.2	43
125	The photoluminescence mechanism of CsPb ₂ Br ₅ microplates revealed by spatially resolved single particle spectroscopy. Nanoscale, 2019, 11, 3186-3192.	2.8	43
126	Colloidal nanocrystals of orthorhombic Cu ₂ ZnGeS ₄ : phase-controlled synthesis, formation mechanism and photocatalytic behavior. Nanoscale, 2015, 7, 3247-3253.	2.8	42

#	Article	IF	CITATIONS
127	Plasmon coupling-enhanced two-photon photoluminescence of Au@Ag core–shell nanoparticles and applications in the nuclease assay. Nanoscale, 2015, 7, 10233-10239.	2.8	42
128	Interface studies of the planar heterojunction perovskite solar cells. Solar Energy Materials and Solar Cells, 2016, 157, 783-790.	3.0	42
129	Towards <i>meso</i> êEster BODIPYs with Aggregationâ€Induced Emission Properties: The Effect of Substitution Positions. Chemistry - an Asian Journal, 2015, 10, 1631-1634.	1.7	41
130	Transient photoconductivity and femtosecond nonlinear optical properties of a conjugated polymer–graphene oxide composite. Nanotechnology, 2010, 21, 415203.	1.3	40
131	Water-Soluble Conjugated Polymers for Amplification of One- and Two-photon Properties of Photosensitizers. Macromolecules, 2011, 44, 5373-5380.	2.2	40
132	Highly Sensitive Two-Photon Sensing of Thrombin in Serum Using Aptamers and Silver Nanoparticles. ACS Applied Materials & Diversary: Interfaces, 2013, 5, 10853-10857.	4.0	40
133	Electrostatically self-assembled chitosan derivatives working as efficient cathode interlayers for organic solar cells. Nano Energy, 2017, 34, 164-171.	8.2	40
134	Plasmon-Enhanced Fluorescence in Coupled Nanostructures and Applications in DNA Detection. ACS Applied Bio Materials, 2018, 1, 118-124.	2.3	40
135	Arsenic(II) Sulfide Quantum Dots Prepared by a Wet Process from its Bulk. Journal of the American Chemical Society, 2008, 130, 11596-11597.	6.6	39
136	Moduleâ€Patterned Polymerization towards Crystalline 2D sp ² â€Carbon Covalent Organic Framework Semiconductors. Angewandte Chemie - International Edition, 2022, 61, .	7.2	38
137	Isomerization Dynamics of 1,1'-Diethyl-4,4'-Cyanine (1144C) Studied by Different Third-Order Nonlinear Spectroscopic Measurements. Journal of Physical Chemistry A, 2001, 105, 10187-10195.	1.1	37
138	Bimetallic Au/Ag Core–Shell Nanorods Studied by Ultrafast Transient Absorption Spectroscopy under Selective Excitation. Journal of Physical Chemistry C, 2011, 115, 14000-14005.	1.5	34
139	Photoâ€Controlled Polymerizationâ€Induced Selfâ€Assembly (Photoâ€PISA): A Novel Strategy Using In Situ Bromineâ€Iodine Transformation Living Radical Polymerization. Macromolecular Rapid Communications, 2019, 40, e1800327.	2.0	34
140	Controlled Aqueous Synthesis of 2D Hybrid Perovskites with Bright Room-Temperature Long-Lived Luminescence. Journal of Physical Chemistry Letters, 2019, 10, 2869-2873.	2.1	34
141	Wavelength-dependent resonant homodyne and heterodyne transient grating spectroscopy with a diffractive optics method: Solvent effect on the third-order signal. Journal of Chemical Physics, 2002, 116, 9333-9340.	1.2	33
142	Lighting up the gold nanoparticles quenched fluorescence by silver nanoparticles: a separation distance study. RSC Advances, 2016, 6, 58566-58572.	1.7	33
143	Excitation Wavelength and Fluence Dependent Femtosecond Transient Absorption Studies on Electron Dynamics of Gold Nanorods. Journal of Physical Chemistry A, 2011, 115, 3820-3826.	1.1	32
144	Octupolar Polycyclic Aromatic Hydrocarbons as New Twoâ€Photon Absorption Chromophores: Synthesis and Application for Optical Power Limiting. Chemistry - A European Journal, 2011, 17, 3837-3841.	1.7	32

#	Article	IF	Citations
145	Au Nanorod/ZnO Core–Shell Nanoparticles as Nano-Photosensitizers for Near-Infrared Light-Induced Singlet Oxygen Generation. Journal of Physical Chemistry C, 2018, 122, 7824-7830.	1.5	32
146	Enhanced One―and Twoâ€Photon Excitation Emission of a Porphyrin Photosensitizer by FRET from a Conjugated Polyelectrolyte. Macromolecular Rapid Communications, 2009, 30, 504-508.	2.0	31
147	Tuning Two-Photon Photoluminescence of Gold Nanoparticle Aggregates with DNA and Its Application as Turn-on Photoluminescence Probe for DNA Sequence Detection. ACS Applied Materials & Samp; Interfaces, 2014, 6, 13149-13156.	4.0	31
148	Controlled preparation of Au/Ag/SnO ₂ coreâ€"shell nanoparticles using a photochemical method and applications in LSPR based sensing. Nanoscale, 2015, 7, 9025-9032.	2.8	30
149	⟨i⟩In situ⟨ i⟩ growth of α-Fe⟨sub⟩2⟨ sub⟩0⟨sub⟩3⟨ sub⟩@Co⟨sub⟩3⟨ sub⟩O⟨sub⟩4⟨ sub⟩ coreâ€"shell wormlike nanoarrays for a highly efficient photoelectrochemical water oxidation reaction. Nanoscale, 2019, 11, 1111-1122.	2.8	29
150	Plasmonâ€Coupled Gold Nanospheres for Twoâ€Photon Imaging and Photoantibacterial Activity. Advanced Healthcare Materials, 2015, 4, 674-678.	3.9	28
151	Elucidating Surface and Bulk Emission in 3D Hybrid Organic–Inorganic Lead Bromide Perovskites. Advanced Optical Materials, 2018, 6, 1800470.	3.6	28
152	Highly stable enhanced near-infrared amplified spontaneous emission in solution-processed perovskite films by employing polymer and gold nanorods. Nanoscale, 2019, 11, 1959-1967.	2.8	28
153	High-Yield Exfoliation of Monolayer 1T'-MoTe ₂ as Saturable Absorber for Ultrafast Photonics. ACS Nano, 2021, 15, 18448-18457.	7.3	28
154	An efficient binary cathode interlayer for large-bandgap non-fullerene organic solar cells. Journal of Materials Chemistry A, 2019, 7, 12426-12433.	5.2	26
155	High-performance and stable CsPbBr ₃ light-emitting diodes based on polymer additive treatment. RSC Advances, 2019, 9, 27684-27691.	1.7	25
156	New Family of Plasmonic Photocatalysts without Noble Metals. Chemistry of Materials, 2019, 31, 2320-2327.	3.2	25
157	AlE-active polysulfates <i>via</i> a sulfur(<scp>vi</scp>) fluoride exchange (SuFEx) click reaction and investigation of their two-photon fluorescence and cyanide detection in water and in living cells. Polymer Chemistry, 2020, 11, 1033-1042.	1.9	25
158	Solvent-Dependent Two-Photon Photoluminescence and Excitation Dynamics of Gold Nanorods. Journal of Physical Chemistry B, 2013, 117, 15576-15583.	1.2	24
159	Aggregation of Metal-Nanoparticle-Induced Fluorescence Enhancement and Its Application in Sensing. ACS Omega, 2020, 5, 41-48.	1.6	24
160	Nonhalogenatedâ€Solventâ€Processed Highâ€Performance Allâ€Polymer Solar Cell with Efficiency over 14%. Solar Rrl, 2021, 5, 2100076.	3.1	24
161	Tailoring the coercive field in ferroelectric metal-free perovskites by hydrogen bonding. Nature Communications, 2022, 13, 794.	5.8	24
162	A Photostable Nearâ€Infrared Protein Labeling Dye for In Vivo Imaging. Chemistry - an Asian Journal, 2011, 6, 1353-1357.	1.7	23

#	Article	IF	Citations
163	Nanoprecipitation of Fluorescent Conjugated Polymer onto the Surface of Plasmonic Nanoparticle for Fluorescence/Dark-Field Dual-Modality Single Particle Imaging. Analytical Chemistry, 2016, 88, 6827-6835.	3.2	23
164	Frequency Selected Ultrafast Infrared Vibrational Echo Studies of Liquids, Glasses, and Proteins. Journal of Physical Chemistry A, 2002, 106, 8839-8849.	1.1	22
165	Single Base Pair Mismatch Detection Using Cationic Conjugated Polymers through Fluorescence Resonance Energy Transfer. Macromolecular Rapid Communications, 2007, 28, 729-732.	2.0	22
166	Rapid Synthesis of Highly Monodisperse Au _{<i>x</i>} Ag _{1â^'<i>x</i>} Alloy Nanoparticles via a Half-Seeding Approach. Langmuir, 2011, 27, 5633-5643.	1.6	22
167	Single Particle Studies on Two-Photon Photoluminescence of Gold Nanorod–Nanosphere Heterodimers. Journal of Physical Chemistry C, 2016, 120, 11621-11630.	1.5	22
168	Enhanced planar heterojunction perovskite solar cell performance and stability using PDDA polyelectrolyte capping agent. Solar Energy Materials and Solar Cells, 2017, 172, 133-139.	3.0	22
169	Polyfluorene based conjugated polymer nanoparticles for two-photon live cell imaging. Science China Chemistry, 2018, 61, 88-96.	4.2	22
170	Simultaneous Imaging and Selective Photothermal Therapy through Aptamer-Driven Au Nanosphere Clustering. Journal of Physical Chemistry Letters, 2019, 10, 183-188.	2.1	22
171	Strong red upconversion luminescence and optical thermometry of Yb3+/Er3+ Co-doped β-Ba2ScAlO5 phosphor. Journal of Alloys and Compounds, 2022, 895, 162692.	2.8	22
172	Different Real and Imaginary Components of the Resonant Third-Order Polarization Revealed by Optical Heterodyne Detected Transient Grating Spectroscopic Studies of Crystal Violet: Model and Experimentâ€. Journal of Physical Chemistry A, 2002, 106, 10755-10763.	1.1	21
173	Defect dynamics and spectral observation of twinning in single crystalline LaAlO3 under subbandgap excitation. Applied Physics Letters, 2011, 98, .	1.5	20
174	Huge enhancement of optical nonlinearities in coupled Au and Ag nanoparticles induced by conjugated polymers. Applied Physics Letters, 2012, 100, 023106.	1.5	20
175	Fine structural tuning of whereabout and clustering of metal–metal oxide heterostructure for optimal photocatalytic enhancement and stability. Nanoscale, 2014, 6, 12655-12664.	2.8	20
176	Thermally evaporated two-dimensional SnS as an efficient and stable electron collection interlayer for inverted planar perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 4759-4765.	5.2	20
177	Light Scattering and Luminescence Studies on Self-Aggregation Behavior of Amphiphilic Copolymer Micelles. Journal of Physical Chemistry B, 2008, 112, 749-755.	1.2	19
178	Red emitting conjugated polymer based nanophotosensitizers for selectively targeted two-photon excitation imaging guided photodynamic therapy. Nanoscale, 2019, 11, 185-192.	2.8	19
179	Designing Subâ€2â€nm Organosilica Nanohybrids for Farâ€Field Superâ€Resolution Imaging. Angewandte Chemie - International Edition, 2020, 59, 746-751.	7.2	19
180	Static and ultrafast dynamics of defects of SrTiO3 in LaAlO3/SrTiO3 heterostructures. Applied Physics Letters, 2011, 98, 081916.	1.5	18

#	Article	IF	CITATIONS
181	Alkali Salt-Doped Highly Transparent and Thickness-Insensitive Electron-Transport Layer for High-Performance Polymer Solar Cell. ACS Applied Materials & Diterfaces, 2018, 10, 1939-1947.	4.0	18
182	Pyrrolopyrrole aza boron dipyrromethene based two-photon fluorescent probes for subcellular imaging. Journal of Materials Chemistry B, 2018, 6, 5570-5581.	2.9	18
183	Gold nanorod-enhanced two-photon excitation fluorescence of conjugated oligomers for two-photon imaging guided photodynamic therapy. Journal of Materials Chemistry C, 2019, 7, 14693-14700.	2.7	18
184	Time-resolved measurements of photoinduced electron transfer from polyfluorene to C60. Physical Review B, 2003, 67, .	1.1	17
185	Flexible, robust and highly efficient broadband nonlinear optical materials based on graphene oxide impregnated polymer sheets. Photonics Research, 2015, 3, A87.	3.4	17
186	Gold nanorings synthesized via a stress-driven collapse and etching mechanism. NPG Asia Materials, 2016, 8, e323-e323.	3.8	17
187	Highly sensitive and selective two-photon sensing of cartap using Au@Ag core-shell nanoparticles. Science China Chemistry, 2016, 59, 78-82.	4.2	17
188	Spontaneous Electroless Galvanic Cell Deposition of 3D Hierarchical and Interlaced S–M–S Heterostructures. Advanced Materials, 2017, 29, 1604417.	11.1	16
189	Photoluminescence Mechanisms of Allâ€Inorganic Cesium Lead Bromide Perovskites Revealed by Single Particle Spectroscopy. ChemNanoMat, 2020, 6, 327-335.	1.5	16
190	Direct Visualization of Conformational Switch of iâ€Motif DNA with a Cationic Conjugated Polymer. Chemistry - an Asian Journal, 2010, 5, 1094-1098.	1.7	15
191	Enhancement in the photovoltaic performance of planar perovskite solar cells by perovskite cluster engineering using an interfacial energy modifier. Nanoscale, 2019, 11, 3216-3221.	2.8	15
192	Synthesis of Twoâ€Dimensional Perovskite by Inverse Temperature Crystallization and Studies of Exciton States by Twoâ€Photon Excitation Spectroscopy. Advanced Functional Materials, 2020, 30, 2002661.	7.8	15
193	Giant Emission Enhancement of Solidâ€State Gold Nanoclusters by Surface Engineering. Angewandte Chemie, 2020, 132, 8347-8353.	1.6	15
194	Temperature-dependent vibrational dephasing: Comparison of liquid and glassy solvents using frequency-selected vibrational echoes. Journal of Chemical Physics, 2002, 117, 2732-2740.	1.2	14
195	Study of Linear and Nonlinear Optical Properties of Four Derivatives of Substituted Aryl Hydrazones of 1,8â€Naphthalimide. Chinese Journal of Chemistry, 2014, 32, 205-211.	2.6	14
196	Fast Charge Separation at Semiconductor Sensitizer–Molecular Relay Interface Leads to Significantly Enhanced Solar Cell Performance. Journal of Physical Chemistry C, 2015, 119, 9774-9781.	1.5	14
197	Variations in the ⁵ D ₀ ât' ⁷ F _{0â€"4} transitions of Eu ³⁺ and white light emissions in Agâ€"Eu exchanged zeolite-Y. RSC Advances, 2016, 6, 95925-95935.	1.7	14
198	Two-Photon Photoluminescence and Photothermal Properties of Hollow Gold Nanospheres for Efficient Theranostic Applications. Journal of Physical Chemistry C, 2018, 122, 13304-13313.	1.5	14

#	Article	IF	CITATIONS
199	Aggregation induced emission enhancement by plasmon coupling of noble metal nanoparticles. Materials Chemistry Frontiers, 2019, 3, 2421-2427.	3.2	14
200	The synthesis and NLO properties of 1,8-naphthalimide derivatives for both femtosecond and nanosecond laser pulses. Dyes and Pigments, 2012, 94, 271-277.	2.0	13
201	Impact of the Structural Modification of Diamondoid Cd(II) MOFs on the Nonlinear Optical Properties. ACS Applied Materials & Camp; Interfaces, 2021, 13, 60163-60172.	4.0	13
202	Direct observation of a time-delayed intermediate state generated via exciton-exciton annihilation in polyfluorene. Physical Review B, 2003, 68, .	1.1	12
203	Tetracene-Doped Anthracene Nanowire Arrays: Preparation and Doping Effects. Langmuir, 2011, 27, 6374-6380.	1.6	12
204	Ultrafast carrier dynamics and third-order nonlinear optical properties of AgInS2/ZnS nanocrystals. Nanotechnology, 2018, 29, 255703.	1.3	12
205	Aggregation enhanced photoactivity of photosensitizer conjugated metal nanoparticles for multimodal imaging and synergistic phototherapy below skin tolerance threshold. Nano Today, 2022, 45, 101534.	6.2	12
206	Radially oriented anthracene nanowire arrays: preparation, growth mechanism, and optical fluorescence. Nanoscale, 2011, 3, 1855.	2.8	11
207	Enhancement of Two-Photon Fluorescence and Low Threshold Amplification of Spontaneous Emission of Zn-processed CulnS2 Quantum Dots. ACS Photonics, 2018, 5, 1310-1317.	3.2	11
208	Two-Photon Enzymatic Probes Visualizing Sub-cellular/Deep-brain Caspase Activities in Neurodegenerative Models. Scientific Reports, 2016, 6, 26385.	1.6	10
209	Flower-like Au/Ag/TiO2 nanocomposites with enhanced photocatalytic efficiency under visible light irradiation. Science China Chemistry, 2017, 60, 521-527.	4.2	10
210	Templating nanotraffic light $\hat{a}\in$ " dynamic tricoloured blinking silver nanoclusters on a graphene oxide film. Journal of Materials Chemistry C, 2018, 6, 4641-4648.	2.7	10
211	Aggregation-Induced Plasmon Coupling-Enhanced One- and Two-Photon Excitation Fluorescence by Silver Nanoparticles. Langmuir, 2020, 36, 4721-4727.	1.6	10
212	Dual Blue Emission in Ruddlesden–Popper Lead-Bromide Perovskites Induced by Photon Recycling. Journal of Physical Chemistry C, 2021, 125, 18308-18316.	1.5	10
213	Synthesis and Structureâ^'Property Investigation of Polyarenes with Conjugated Side Chains. Macromolecules, 2008, 41, 8473-8482.	2.2	9
214	Tuning Optical Nonlinearity of Laser-Ablation-Synthesized Silicon Nanoparticles via Doping Concentration. Journal of Nanomaterials, 2014, 2014, 1-7.	1.5	9
215	Bose–Einstein oscillators and the excitation mechanism of free excitons in 2D layered organic–inorganic perovskites. RSC Advances, 2017, 7, 18366-18373.	1.7	9
216	Single-Particle Spectroscopic Studies on Two-Photon Photoluminescence of Coupled Au Nanorod Dimers. Journal of Physical Chemistry C, 2018, 122, 23102-23110.	1.5	9

#	Article	IF	CITATIONS
217	Disorder Engineering in Monolayer Nanosheets Enabling Photothermic Catalysis for Full Solar Spectrum (250–2500 nm) Harvesting. Angewandte Chemie, 2019, 131, 3109-3113.	1.6	9
218	One-Step Photocontrolled Polymerization-Induced Self-Assembly (Photo-PISA) by Using In Situ Bromine-Iodine Transformation Reversible-Deactivation Radical Polymerization. Polymers, 2020, 12, 150.	2.0	8
219	Multifunctional Properties of a Zn(II) Coordination Complex. Crystal Growth and Design, 2021, 21, 3401-3408.	1.4	8
220	Capping-agent-free synthesis of substrate-supported porous icosahedral gold nanoparticles. Nanoscale, 2013, 5, 2983.	2.8	7
221	Band Nesting Bypass in WS ₂ Monolayers <i>via</i> Förster Resonance Energy Transfer. ACS Nano, 2020, 14, 5946-5955.	7.3	7
222	Transient Reflection Spectroscopy on Ultrafast Interlayer Charge Transfer Processes in a MoS ₂ /WSe ₂ van der Waals Heterojunction. Journal of Physical Chemistry C, 2021, 125, 26575-26582.	1.5	7
223	Moduleâ€Patterned Polymerization towards Crystalline 2D sp ² â€Carbon Covalent Organic Framework Semiconductors. Angewandte Chemie, 2022, 134, .	1.6	7
224	Separation of contributions to the third-order signal: ultrafast frequency-selected vibrational echo experiments on a metalloporphyrin-CO. Chemical Physics Letters, 2002, 355, 139-146.	1.2	6
225	Photocatalytic Hydrogen Evolution: Photocatalytic Hydrogen Evolution under Ambient Conditions on Polymeric Carbon Nitride/Donorâ€i€â€Acceptor Organic Molecule Heterostructures (Adv. Funct.) Tj ETQq1 1	0.784314	rg&T/Overlo
226	Single-particle studies on plasmon enhanced photoluminescence of monolayer MoS2 by gold nanoparticles of different shapes. Journal of Chemical Physics, 2021, 155, 234201.	1.2	6
227	Delayed emission from recombination of charge-separated pairs on polyfluorene chains in dilute solution. Physical Review B, 2004, 69, .	1.1	5
228	RECENT ADVANCES IN METAL-ENHANCED OPTICAL PROPERTIES. Cosmos, 2010, 06, 167-195.	0.4	5
229	Synthesis and Morphology of Two Carbazole–Pyrazolineâ€Containing Polymer Systems and Their Electrical Memory Performance. ChemPlusChem, 2015, 80, 1354-1362.	1.3	5
230	An Au NP doped buffer layer in a slab waveguide for enhancement of organic amplified spontaneous emission. Journal of Materials Chemistry C, 2017, 5, 1356-1362.	2.7	4
231	Investigation on the structural, morphological, electronic and photovoltaic properties of a perovskite thin film by introducing lithium halide. RSC Advances, 2018, 8, 11455-11461.	1.7	4
232	Color routing at the nanoscale. Light: Science and Applications, 2019, 8, 58.	7.7	4
233	SERS under magnetic control. Annalen Der Physik, 2012, 524, A161.	0.9	3
234	Two-Photon Excitation of Gold Nanorods Interrupted by Extremely Fast Solvent-to-Metal Electron Transfer. Journal of Physical Chemistry C, 2017, 121, 28546-28555.	1.5	3

#	ARTICLE	IF	CITATIONS
235	Designing Subâ€2â€nm Organosilica Nanohybrids for Farâ€Field Superâ€Resolution Imaging. Angewandte Chemie, 2020, 132, 756-761.	1.6	3
236	Twoâ€Photon Absorption of Butterflyâ€Shaped Carbonylâ€Bridged Twistarene. Asian Journal of Organic Chemistry, 2020, 9, 579-583.	1.3	3
237	Dynamic Tuning of Moiré Superlattice Morphology by Laser Modification. ACS Nano, 2022, 16, 8172-8180.	7.3	3
238	Plasmon-enhanced light harvesting: applications in enhanced photocatalysis, photodynamic therapy and photovoltaics. , 0, .		1
239	Simulation of fluorescence enhancement by an AFM tip on a gold particle quenched emitter. Applied Optics, 2016, 55, 8722.	2.1	1
240	Titelbild: Disorder Engineering in Monolayer Nanosheets Enabling Photothermic Catalysis for Full Solar Spectrum (250–2500 nm) Harvesting (Angew. Chem. 10/2019). Angewandte Chemie, 2019, 131, 2933-2933.	1.6	0
241	Optical heterodyne detected transient grating (OHD-TG) studies on the reactive and non-reactive resonant systems. , 2002, , .		0
242	A Systematic Study of Laserâ€Engineered Fluorescence in Carbon Black. Advanced Photonics Research, 0, , 2100180.	1.7	0