Rick S Llewellyn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4384146/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reducing the Risks of Herbicide Resistance: Best Management Practices and Recommendations. Weed Science, 2012, 60, 31-62.	1.5	786
2	Predicting farmer uptake of new agricultural practices: A tool for research, extension and policy. Agricultural Systems, 2017, 156, 115-125.	6.1	215
3	The farm-level economics of conservation agriculture for resource-poor farmers. Agriculture, Ecosystems and Environment, 2014, 187, 52-64.	5.3	178
4	Extensive use of no-tillage in grain growing regions of Australia. Field Crops Research, 2012, 132, 204-212.	5.1	170
5	Widespread occurrence of multiple herbicide resistance in Western Australian annual ryegrass (Lolium rigidum) populations. Australian Journal of Agricultural Research, 2007, 58, 711.	1.5	168
6	Adoption of variable rate fertiliser application in the Australian grains industry: status, issues and prospects. Precision Agriculture, 2012, 13, 181-199.	6.0	148
7	Factors influencing adoption of conservation tillage in Australian cropping regions*. Australian Journal of Agricultural and Resource Economics, 2008, 52, 169-182.	2.6	129
8	High Levels of Herbicide Resistance in Rigid Ryegrass (Lolium rigidum) in the Wheat Belt of Western Australia1. Weed Technology, 2001, 15, 242-248.	0.9	125
9	Adoption of conservation tillage in Australian cropping regions: An application of duration analysis. Technological Forecasting and Social Change, 2006, 73, 630-647.	11.6	111
10	Stepwise frameworks for understanding the utilisation of conservation agriculture in Africa. Agricultural Systems, 2017, 153, 11-22.	6.1	77
11	Information quality and effectiveness for more rapid adoption decisions by farmers. Field Crops Research, 2007, 104, 148-156.	5.1	75
12	Grain grower perceptions and use of integrated weed management. Australian Journal of Experimental Agriculture, 2004, 44, 993.	1.0	74
13	Are farmers in low-rainfall cropping regions under-fertilising with nitrogen? A risk analysis. Agricultural Systems, 2013, 116, 37-51.	6.1	72
14	Farmer risk-aversion limits closure of yield and profit gaps: A study of nitrogen management in the southern Australian wheatbelt. Agricultural Systems, 2015, 137, 108-118.	6.1	65
15	High Levels of Adoption Indicate That Harvest Weed Seed Control Is Now an Established Weed Control Practice in Australian Cropping. Weed Technology, 2017, 31, 341-347.	0.9	61
16	No-tillage adoption decisions in southern Australian cropping and the role of weed management. Australian Journal of Experimental Agriculture, 2006, 46, 563.	1.0	59
17	Resistance and the herbicide resource: perceptions of Western Australian grain growers. Crop Protection, 2002, 21, 1067-1075.	2.1	57
18	Nitrogen cycling in summer active perennial grass systems in South Australia: non-symbiotic nitrogen fixation. Crop and Pasture Science, 2014, 65, 1044.	1.5	54

RICK S LLEWELLYN

#	Article	IF	CITATIONS
19	Global learnings to inform the local adaptation of conservation agriculture in Eastern and Southern Africa. Global Food Security, 2018, 17, 213-220.	8.1	51
20	Multiple herbicide resistance in barnyardgrass (<i>Echinochloa crus-galli</i>) in direct-seeded rice in the Philippines. International Journal of Pest Management, 2010, 56, 299-307.	1.8	50
21	The Adopters versus the Technology: Which Matters More when Predicting or Explaining Adoption?. Applied Economic Perspectives and Policy, 2020, 42, 80-91.	5.6	50
22	Negative evaluation of conservation agriculture: perspectives from African smallholder farmers. International Journal of Agricultural Sustainability, 2017, 15, 467-481.	3.5	48
23	Herbicide resistance and the adoption of integrated weed management by Western Australian grain growers. Agricultural Economics (United Kingdom), 2007, 36, 123-130.	3.9	46
24	Controlling Within-Field Sheep Movement Using Virtual Fencing. Animals, 2018, 8, 31.	2.3	41
25	Developing an Ethically Acceptable Virtual Fencing System for Sheep. Animals, 2018, 8, 33.	2.3	40
26	Constraints to the utilisation of conservation agriculture in Africa as perceived by agricultural extension service providers. Land Use Policy, 2018, 73, 331-340.	5.6	39
27	Targeting key perceptions when planning and evaluating extension. Australian Journal of Experimental Agriculture, 2005, 45, 1627.	1.0	38
28	Expected mobility of herbicide resistance via weed seeds and pollen in a Western Australian cropping region. Crop Protection, 2006, 25, 520-526.	2.1	37
29	Understanding the Adoption of Innovations in Agriculture: A Review of Selected Conceptual Models. Agronomy, 2021, 11, 139.	3.0	37
30	Economics of pre-emptive management to avoid weed resistance to glyphosate in Australia. Crop Protection, 2005, 24, 659-665.	2.1	34
31	Predicting Adoption of Innovations by Farmers: What is Different in Smallholder Agriculture?. Applied Economic Perspectives and Policy, 2020, 42, 100-112.	5.6	34
32	Virtual Fencing Technology Excludes Beef Cattle from an Environmentally Sensitive Area. Animals, 2020, 10, 1069.	2.3	31
33	Break-crop effects on wheat production across soils and seasons in a semi-arid environment. Crop and Pasture Science, 2015, 66, 566.	1.5	27
34	Prospects for yield improvement in the Australian wheat industry: a perspective. Food and Energy Security, 2016, 5, 107-122.	4.3	27
35	Adoption pathway analysis: Representing the dynamics and diversity of adoption for agricultural practices. Agricultural Systems, 2021, 191, 103173.	6.1	26
36	Herbicide Resistance in Rigid Ryegrass (Lolium rigidum)Has Not Led to Higher Weed Densities in Western Australian Cropping Fields. Weed Science, 2009, 57, 61-65.	1.5	23

RICK S LLEWELLYN

#	Article	lF	CITATIONS
37	Why do information gaps persist in African smallholder agriculture? Perspectives from farmers lacking exposure toÂconservation agriculture. Journal of Agricultural Education and Extension, 2018, 24, 191-208.	2.2	22
38	Long-term cropping system studies support intensive and responsive cropping systems in the low-rainfall Australian Mallee. Crop and Pasture Science, 2015, 66, 553.	1.5	20
39	Social influence on the effectiveness of virtual fencing in sheep. PeerJ, 2020, 8, e10066.	2.0	20
40	Further participatory adaptation is required for community leaders to champion conservation agriculture in Africa. International Journal of Agricultural Sustainability, 2018, 16, 286-296.	3.5	19
41	Summer-growing perennial grasses are a potential new feed source in the low rainfall environment of southern Australia. Crop and Pasture Science, 2014, 65, 1033.	1.5	16
42	Research capacity for local innovation: the case of conservation agriculture in Ethiopia, Malawi and Mozambique. Journal of Agricultural Education and Extension, 2018, 24, 249-262.	2.2	16
43	Who will benefit from big data? Farmers' perspective on willingness to share farm data. Journal of Rural Studies, 2021, 88, 346-353.	4.7	16
44	Challenges and opportunities for grain farming on sandy soils of semi-arid south and south-eastern Australia. Soil Research, 2020, 58, 323.	1.1	15
45	From interest to implementation: exploring farmer progression of conservation agriculture in Eastern and Southern Africa. Environment, Development and Sustainability, 2020, 22, 3159-3177.	5.0	14
46	Selecting higher nutritive value annual pasture legumes increases the profitability of sheep production. Agricultural Systems, 2021, 194, 103272.	6.1	14
47	Pathways to intensify the utilization of conservation agriculture by African smallholder farmers. Renewable Agriculture and Food Systems, 2019, 34, 558-570.	1.8	13
48	Using a Choice Experiment to Improve Decision Support Tool Design. Applied Economic Perspectives and Policy, 2014, 36, 351-371.	5.6	10
49	Assessing the Potential for Zoneâ€Specific Management of Cereals in Lowâ€Rainfall Southâ€Eastern Australia: Combining Onâ€Farm Results and Simulation Analysis. Journal of Agronomy and Crop Science, 2017, 203, 14-28.	3.5	10
50	Opportunities for plant improvement to increase the value of forage shrubs on low-rainfall mixed farms. Crop and Pasture Science, 2014, 65, 1057.	1.5	10
51	Simulation of water-limited growth of the forage shrub saltbush (Atriplex nummularia Lindl.) in a low-rainfall environment of southern Australia. Crop and Pasture Science, 2014, 65, 1068.	1.5	9
52	Farmer interest in joint venture structures in the Australian broadacre grains sector. Agribusiness, 2018, 34, 472-491.	3.4	8
53	Developing the role of perennial forages for crop–livestock farms: a strategic multi-disciplinary approach. Crop and Pasture Science, 2014, 65, 945.	1.5	8
54	Engaging project proponents in R&D evaluation using bio-economic and socio-economic tools. Agricultural Systems, 2012, 108, 94-103.	6.1	6

RICK S LLEWELLYN

#	Article	IF	CITATIONS
55	The Wisdom of Farm Advisors: Knowing Who and Knowing Why. SSRN Electronic Journal, 0, , .	0.4	5
56	Combined application of nitrogen and phosphorus to enhance nitrogen use efficiency and close the wheat yield gap on varying soils in semiâ€arid conditions. Journal of Agronomy and Crop Science, 2019, 205, 635-646.	3.5	5
57	What farmer types are most likely to adopt joint venture farm business structures?. Australian Journal of Agricultural and Resource Economics, 2019, 63, 881-896.	2.6	4
58	The Key Social Processes Sustaining the Farmer/Adviser Relationship. SSRN Electronic Journal, 0, , .	0.4	0