
Xianwei Fu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4383758/publications.pdf Version: 2024-02-01

XIANNALE FU

#	Article	IF	CITATIONS
1	Breaking the periodic arrangement of atoms for the enhanced electrochemical reduction of nitrogen and water oxidation. Science China Materials, 2022, 65, 147-154.	3.5	6
2	Descriptors for the Evaluation of Electrocatalytic Reactions: dâ€Band Theory and Beyond. Advanced Functional Materials, 2022, 32, 2107651.	7.8	154
3	Structural design for electrocatalytic water splitting to realize industrial-scale deployment: Strategies, advances, and perspectives. Journal of Energy Chemistry, 2022, 70, 129-153.	7.1	60
4	The lab-to-fab journey of copper-based electrocatalysts for multi-carbon production: Advances, challenges, and opportunities. Nano Today, 2021, 36, 101028.	6.2	25
5	Perfecting electrocatalysts <i>via</i> imperfections: towards the large-scale deployment of water electrolysis technology. Energy and Environmental Science, 2021, 14, 1722-1770.	15.6	213
6	Point-defect-optimized electron distribution for enhanced electrocatalysis: Towards the perfection of the imperfections. Nano Today, 2020, 31, 100833.	6.2	52
7	Large-Scale Growth of Ultrathin Low-Dimensional Perovskite Nanosheets for High-Detectivity Photodetectors. ACS Applied Materials & Interfaces, 2020, 12, 2884-2891.	4.0	26
8	Wavelength-Tunable Interlayer Exciton Emission at the Near-Infrared Region in van der Waals Semiconductor Heterostructures. Nano Letters, 2020, 20, 3361-3368.	4.5	35
9	Room temperature exciton-polaritons in high-quality 2D Ruddlesden–Popper perovskites (BA)2(MA)n-1Pbnl3n + 1 (n = 3, 4). Applied Physics Letters, 2020, 117, .	1.5	7
10	Highly stable lead-free Cs3Bi2I9 perovskite nanoplates for photodetection applications. Nano Research, 2019, 12, 1894-1899.	5.8	96
11	Solvent-Assisted Thermal-Pressure Strategy for Constructing High-Quality CH ₃ NH ₃ Pbl _{3–<i>x</i>} Cl _{<i>x</i>} Films as High-Performance Perovskite Photodetectors. ACS Applied Materials & Interfaces, 2018, 10, 8393-8398.	4.0	16
12	High-Quality CH ₃ NH ₃ Pbl ₃ Films Obtained via a Pressure-Assisted Space-Confined Solvent-Engineering Strategy for Ultrasensitive Photodetectors. Nano Letters, 2018, 18, 1213-1220.	4.5	35
13	Pressure-sensitive transistor fabricated from an organic semiconductor 1,1′-dibutyl-4,4′-bipyridinium diiodide. Chemical Research in Chinese Universities, 2018, 34, 95-100.	1.3	1
14	A CH ₃ NH ₃ PbI ₃ film for a room-temperature NO ₂ gas sensor with quick response and high selectivity. RSC Advances, 2018, 8, 390-395.	1.7	69
15	Ultrathin TiO ₂ nanosheets synthesized using a high pressure solvothermal method and the enhanced photoresponse performance of CH ₃ NH ₃ Pbl ₃ –TiO ₂ composite films. RSC Advances, 2017. 7. 20845-20850.	1.7	9
16	An in-situ surface modification route for realizing the synergetic effect in P3HT-SnO2 composite sensor and strikingly improving its sensing performance. Sensors and Actuators B: Chemical, 2017, 241, 1210-1217.	4.0	10
17	Photoluminescence Enhancement in Thin Two-Dimensional Ruddlesden–Popper Perovskites by Spiro-OMeTAD. Journal of Physical Chemistry C, 0, , .	1.5	1