
Selim Bozkurt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4383706/publications.pdf Version: 2024-02-01

SELIM ROZKLIDT

#	Article	IF	CITATIONS
1	Mathematical modeling of cardiac function to evaluate clinical cases in adults and children. PLoS ONE, 2019, 14, e0224663.	1.1	35
2	Physiologic outcome of varying speed rotary blood pump support algorithms: a review study. Australasian Physical and Engineering Sciences in Medicine, 2016, 39, 13-28.	1.4	29
3	Enhancement of Arterial Pressure Pulsatility by Controlling Continuous-Flow Left Ventricular Assist Device Flow Rate in Mock Circulatory System. Journal of Medical and Biological Engineering, 2016, 36, 308-315.	1.0	20
4	Evaluating the Hemodynamical Response of a Cardiovascular System under Support of a Continuous Flow Left Ventricular Assist Device via Numerical Modeling and Simulations. Computational and Mathematical Methods in Medicine, 2013, 2013, 1-12.	0.7	19
5	Improving Arterial Pulsatility by Feedback Control of a Continuous Flow Left Ventricular Assist Device via <i>in Silico</i> Modeling. International Journal of Artificial Organs, 2014, 37, 773-785.	0.7	19
6	Arterial pulsatility improvement in a feedback-controlled continuous flow left ventricular assist device: An ex-vivo experimental study. Medical Engineering and Physics, 2014, 36, 1288-1295.	0.8	19
7	In-silico evaluation of left ventricular unloading under varying speed continuous flow left ventricular assist device support. Biocybernetics and Biomedical Engineering, 2017, 37, 373-387.	3.3	17
8	Effect of Cerebral Flow Autoregulation Function on Cerebral Flow Rate Under Continuous Flow Left Ventricular Assist Device Support. Artificial Organs, 2018, 42, 800-813.	1.0	15
9	Design, Analysis and Testing of a Novel Mitral Valve for Transcatheter Implantation. Annals of Biomedical Engineering, 2017, 45, 1852-1864.	1.3	14
10	Computational modelling of patient specific spring assisted lambdoid craniosynostosis correction. Scientific Reports, 2020, 10, 18693.	1.6	9
11	Aortic Valve Function Under Support of a Left Ventricular Assist Device: Continuous vs. Dynamic Speed Support. Annals of Biomedical Engineering, 2015, 43, 1727-1737.	1.3	8
12	Complications in children with ventricular assist devices: systematic review and meta-analyses. Heart Failure Reviews, 2022, 27, 903-913.	1.7	8
13	Computational analyses of aortic blood flow under varying speed CF-LVAD support. Computers in Biology and Medicine, 2020, 127, 104058.	3.9	7
14	A novel computational model for cerebral blood flow rate control mechanisms to evaluate physiological cases. Biomedical Signal Processing and Control, 2022, 78, 103851.	3.5	6
15	An in silico case study of idiopathic dilated cardiomyopathy via a multi-scale model of the cardiovascular system. Computers in Biology and Medicine, 2014, 53, 141-153.	3.9	5
16	Computational Evaluation of Potential Correction Methods for Unicoronal Craniosynostosis. Journal of Craniofacial Surgery, 2020, 31, 692-696.	0.3	5
17	Computational Simulation of Cardiac Function and Blood Flow in the Circulatory System under Continuous Flow Left Ventricular Assist Device Support during Atrial Fibrillation. Applied Sciences (Switzerland), 2020, 10, 876.	1.3	5
18	Validation of an in-silico modelling platform for outcome prediction in spring assisted posterior vault expansion. Clinical Biomechanics, 2021, 88, 105424.	0.5	5

Selim Bozkurt

#	Article	IF	CITATIONS
19	Arterial pulsatility under phasic left ventricular assist device support. Bio-Medical Materials and Engineering, 2016, 27, 451-460.	0.4	4
20	IN-SILICO MODELING OF LEFT VENTRICLE TO SIMULATE DILATED CARDIOMYOPATHY AND CF-LVAD SUPPORT. Journal of Mechanics in Medicine and Biology, 2017, 17, 1750034.	0.3	4
21	Mechanical and morphological properties of parietal bone in patients with sagittal craniosynostosis. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 125, 104929.	1.5	4
22	Patient-Specific Modelling and Parameter Optimisation to Simulate Dilated Cardiomyopathy in Children. Cardiovascular Engineering and Technology, 2022, 13, 712-724.	0.7	4
23	Pressure, Flow Rate and Operating Speed Characteristics of a Continuous Flow Left Ventricular Assist Device During Varying Speed Support. IEEE Access, 2020, 8, 129830-129841.	2.6	3
24	Computer simulations can replace in-vivo experiments for implantable medical devices. Physical and Engineering Sciences in Medicine, 2021, 44, 1-5.	1.3	3
25	The Science Behind the Springs: Using Biomechanics and Finite Element Modeling to Predict Outcomes in Spring-Assisted Sagittal Synostosis Surgery. Journal of Craniofacial Surgery, 2020, 31, 2074-2078.	0.3	2
26	Control strategies for the left ventricular assist devices. , 2009, , .		1
27	Computational Evaluation of Cardiac Function in Children Supported with Heartware VAD, HeartMate 2 and HeartMate 3 Left Ventricular Assist Devices. Applied Sciences (Switzerland), 2022, 12, 1937.	1.3	0