
Pavle V Radovanovic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4383611/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High-Temperature Ferromagnetism inNi2+-Doped ZnO Aggregates Prepared from Colloidal Diluted Magnetic Semiconductor Quantum Dots. Physical Review Letters, 2003, 91, 157202.	2.9	416
2	General Synthesis of Manganese-Doped Ilâ^'VI and Illâ^'V Semiconductor Nanowires. Nano Letters, 2005, 5, 1407-1411.	4.5	224
3	Advances in spinel Li ₄ Ti ₅ O ₁₂ anode materials for lithium-ion batteries. New Journal of Chemistry, 2015, 39, 38-63.	1.4	207
4	Colloidal Transition-Metal-Doped ZnO Quantum Dots. Journal of the American Chemical Society, 2002, 124, 15192-15193.	6.6	181
5	Electronic Absorption Spectroscopy of Cobalt Ions in Diluted Magnetic Semiconductor Quantum Dots:Â Demonstration of an Isocrystalline Core/Shell Synthetic Method. Journal of the American Chemical Society, 2001, 123, 12207-12214.	6.6	153
6	Size-Tunable Phosphorescence in Colloidal Metastable γ-Ga ₂ O ₃ Nanocrystals. Journal of the American Chemical Society, 2010, 132, 9250-9252.	6.6	130
7	Low-Temperature Activation and Deactivation of High-Curie-Temperature Ferromagnetism in a New Diluted Magnetic Semiconductor:Â Ni2+-Doped SnO2. Journal of the American Chemical Society, 2005, 127, 14479-14487.	6.6	116
8	Free Electron Concentration in Colloidal Indium Tin Oxide Nanocrystals Determined by Their Size and Structure. Journal of Physical Chemistry C, 2011, 115, 406-413.	1.5	103
9	Colloidal Gallium Indium Oxide Nanocrystals: A Multifunctional Light-Emitting Phosphor Broadly Tunable by Alloy Composition. Journal of the American Chemical Society, 2011, 133, 6711-6719.	6.6	79
10	Phase-Controlled Synthesis of Colloidal In ₂ O ₃ Nanocrystals via Size-Structure Correlation. Chemistry of Materials, 2010, 22, 9-11.	3.2	78
11	Dopant-Induced Manipulation of the Growth and Structural Metastability of Colloidal Indium Oxide Nanocrystals. Journal of Physical Chemistry C, 2009, 113, 15928-15933.	1.5	69
12	Plasmon-induced carrier polarization in semiconductor nanocrystals. Nature Nanotechnology, 2018, 13, 463-467.	15.6	60
13	Generating Tunable White Light by Resonance Energy Transfer in Transparent Dye-Conjugated Metal Oxide Nanocrystals. Journal of the American Chemical Society, 2013, 135, 14520-14523.	6.6	59
14	Interplay between Size, Composition, and Phase Transition of Nanocrystalline Cr ³⁺ -Doped BaTiO ₃ as a Path to Multiferroism in Perovskite-Type Oxides. Journal of the American Chemical Society, 2012, 134, 1136-1146.	6.6	58
15	General Control of Transition-Metal-Doped GaN Nanowire Growth: Toward Understanding the Mechanism of Dopant Incorporation. Nano Letters, 2008, 8, 2674-2681.	4.5	56
16	In situ enhancement of the blue photoluminescence of colloidal Ga2O3 nanocrystals by promotion of defect formation in reducing conditions. Chemical Communications, 2011, 47, 7161.	2.2	53
17	Evidence of Charge-Transfer Ferromagnetism in Transparent Diluted Magnetic Oxide Nanocrystals: Switching the Mechanism of Magnetic Interactions. Journal of the American Chemical Society, 2014, 136, 7669-7679.	6.6	52
18	Tuning Plasmon Resonance of In ₂ O ₃ Nanocrystals throughout the Mid-Infrared Region by Competition between Electron Activation and Trapping. Chemistry of Materials, 2017, 29, 4970-4979.	3.2	51

#	Article	IF	CITATIONS
19	Size-Dependent Electron Transfer and Trapping in Strongly Luminescent Colloidal Gallium Oxide Nanocrystals. Journal of Physical Chemistry C, 2011, 115, 18473-18478.	1.5	50
20	Phase Transformation of Colloidal In ₂ O ₃ Nanocrystals Driven by the Interface Nucleation Mechanism: A Kinetic Study. Journal of the American Chemical Society, 2012, 134, 7015-7024.	6.6	49
21	Colloidal Chromium-Doped In2O3 Nanocrystals as Building Blocks for High-TC Ferromagnetic Transparent Conducting Oxide Structures. Journal of Physical Chemistry C, 2008, 112, 17755-17759.	1.5	46
22	Influence of the Host Lattice Electronic Structure on Dilute Magnetic Interactions in Polymorphic Cr(III)-Doped In ₂ O ₃ Nanocrystals. Chemistry of Materials, 2013, 25, 233-244.	3.2	43
23	Origin of size-dependent photoluminescence decay dynamics in colloidal γ-Ga2O3 nanocrystals. Applied Physics Letters, 2012, 100, .	1.5	42
24	Electronic structure and magnetic properties of sub-3 nm diameter Mn-doped SnO2 nanocrystals and nanowires. Applied Physics Letters, 2013, 103, .	1.5	41
25	Dual Europium Luminescence Centers in Colloidal Ga ₂ O ₃ Nanocrystals: Controlled <i>in Situ</i> Reduction of Eu(III) and Stabilization of Eu(II). Chemistry of Materials, 2015, 27, 6030-6037.	3.2	39
26	Hybrid ZnO-Based Nanoconjugate for Efficient and Sustainable White Light Generation. Chemistry of Materials, 2015, 27, 1021-1030.	3.2	39
27	Probing the Role of Dopant Oxidation State in the Magnetism of Diluted Magnetic Oxides Using Fe-Doped In ₂ O ₃ and SnO ₂ Nanocrystals. Journal of Physical Chemistry C, 2017, 121, 1918-1927.	1.5	38
28	Anomalous Photocatalytic Activity of Nanocrystalline γ-Phase Ga ₂ O ₃ Enabled by Long-Lived Defect Trap States. Journal of Physical Chemistry C, 2017, 121, 9433-9441.	1.5	36
29	Correlation between native defects and dopants in colloidal lanthanide-doped Ga2O3nanocrystals: a path to enhance functionality and control optical properties. Journal of Materials Chemistry C, 2014, 2, 3212-3222.	2.7	30
30	Dopant Ion Concentration Dependence of Growth and Faceting of Manganese-Doped GaN Nanowires. Journal of the American Chemical Society, 2007, 129, 10980-10981.	6.6	29
31	Evolution of the faceting, morphology and aspect ratio of gallium oxide nanowires grown by vapor–solid deposition. Journal of Crystal Growth, 2014, 396, 24-32.	0.7	29
32	Tuning Manganese Dopant Spin Interactions in Single GaN Nanowires at Room Temperature. ACS Nano, 2011, 5, 6365-6373.	7.3	28
33	Selective oxidation of alcohols by using CoFe ₂ O ₄ /Ag ₂ MoO ₄ as a visible-light-driven heterogeneous photocatalyst. New Journal of Chemistry, 2020, 44, 2858-2867.	1.4	28
34	Electronic structure and magnetism of Mn dopants in GaN nanowires: Ensemble vs single nanowire measurements. Applied Physics Letters, 2011, 99, 222504.	1.5	24
35	Controlling the Mechanism of Phase Transformation of Colloidal In ₂ O ₃ Nanocrystals. Journal of the American Chemical Society, 2015, 137, 1101-1108.	6.6	22
36	Controlling the Mechanism of Excitonic Splitting in In2O3 Nanocrystals by Carrier Delocalization. ACS Nano, 2018, 12, 11211-11218.	7.3	20

PAVLE V RADOVANOVIC

#	Article	IF	CITATIONS
37	Turning Weakly Luminescent SnO ₂ Nanocrystals into Tunable and Efficient Light Emitters by Aliovalent Alloying. Chemistry of Materials, 2018, 30, 3578-3587.	3.2	14
38	Faceting-Controlled Zeeman Splitting in Plasmonic TiO ₂ Nanocrystals. Nano Letters, 2019, 19, 6695-6702.	4.5	14
39	Novel CoFe ₂ O ₄ /CuBi ₂ O ₄ heterojunction p–n semiconductor as visibleâ€lightâ€driven nanophotocatalyst for C (OH)–H bond activation. Applied Organometallic Chemistry, 2022, 36, .	1.7	14
40	Distance-Dependent Energy Transfer between Ga2O3 Nanocrystal Defect States and Conjugated Organic Fluorophores in Hybrid White-Light-Emitting Nanophosphors. Journal of Physical Chemistry C, 2015, 119, 5687-5696.	1.5	13
41	Surface-Enabled Energy Transfer in Ga ₂ O ₃ –CdSe/CdS Nanocrystal Composite Films: Tunable All-Inorganic Rare Earth Element-Free White-Emitting Phosphor. Journal of Physical Chemistry C, 2016, 120, 19566-19573.	1.5	12
42	Photoluminescence decay dynamics in Î ³ -Ga2O3 nanocrystals: The role of exclusion distance at short time scales. Chemical Physics Letters, 2017, 684, 135-140.	1.2	12
43	Magnetoplasmon Resonances in Semiconductor Nanocrystals: Potential for a New Information Technology Platform. ChemSusChem, 2020, 13, 4885-4893.	3.6	12
44	Keeping track of dopants. Nature Nanotechnology, 2009, 4, 282-283.	15.6	11
45	Molecular Origin of Valence Band Anisotropy in Single β-Ga ₂ O ₃ Nanowires Investigated by Polarized X-ray Absorption Imaging. Journal of Physical Chemistry C, 2015, 119, 17450-17457.	1.5	11
46	Compositional control of the photocatalytic activity of Ga2O3 nanocrystals enabled by defect-induced carrier trapping. Chemical Physics Letters, 2018, 706, 509-514.	1.2	10
47	Effect of Dopant Activation and Plasmon Damping on Carrier Polarization in In ₂ O ₃ Nanocrystals. Journal of Physical Chemistry C, 2019, 123, 29829-29837.	1.5	10
48	A porphyrin-conjugated TiO ₂ /CoFe ₂ O ₄ nanostructure photocatalyst for the selective production of aldehydes under visible light. New Journal of Chemistry, 2021, 45, 8032-8044.	1.4	9
49	Profiling of Unsaturated Lipids by Raman Spectroscopy Directly on Solid-Phase Microextraction Probes. Analytical Chemistry, 2022, 94, 606-611.	3.2	9
50	Energy Transfer between Conjugated Colloidal Ga2O3 and CdSe/CdS Core/Shell Nanocrystals for White Light Emitting Applications. Nanomaterials, 2016, 6, 32.	1.9	8
51	Native defects determine phase-dependent photoluminescence behavior of Eu2+ and Eu3+ in In2O3 nanocrystals. Chemical Communications, 2016, 52, 4353-4356.	2.2	8
52	Extending Afterglow of Ga2O3 Nanocrystals by Dy3+ Dopant-Induced Carrier Trapping: Toward Design of Persistent Colloidal Nanophosphors. Chemistry of Materials, 2020, 32, 7516-7523.	3.2	8
53	Synergistic Effect of the Electronic Structure and Defect Formation Enhances Photocatalytic Efficiency of Gallium Tin Oxide Nanocrystals. Journal of Physical Chemistry C, 2019, 123, 433-442.	1.5	7
54	Inorganic Phosphors for Teaching a Holistic Approach to Functional Materials Investigation: From Synthesis and Characterization to Applications of Thermo- and Mechanoluminescence. Journal of Chemical Education, 2019, 96, 1008-1014.	1.1	6

PAVLE V RADOVANOVIC

#	Article	IF	CITATIONS
55	Properties of Free Charge Carriers Govern Exciton Polarization in Plasmonic Semiconductor Nanocrystals. Journal of Physical Chemistry Letters, 2022, 13, 5545-5552.	2.1	5
56	Control of the spontaneous formation of oxide overlayers on GaP nanowires grown by physical vapor deposition. AIMS Materials Science, 2018, 5, 105-115.	0.7	4
57	Defects and impurities in colloidal Ga2O3 nanocrystals: new opportunities for photonics and lighting. Canadian Journal of Chemistry, 2022, 100, 1-8.	0.6	4
58	On the Origin of d0 Magnetism in Transparent Metal Oxide Nanocrystals. Journal of Physical Chemistry C, 2021, 125, 27714-27722.	1.5	4
59	Controlling Carrier Polarization in Plasmonic Semiconductor Nanocrystals. , 2020, , .		Ο
60	(Invited) Manipulating Carrier Polarization in Semiconductor Nanocrystals. ECS Transactions, 2020, 98, 77-86.	0.3	0