
Hao Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4383305/publications.pdf Version: 2024-02-01

HAOLI

#	Article	IF	CITATIONS
1	Hydrodeoxygenation of Vanillin over Ni2P/Zeolite Catalysts: Role of Surface Acid Density. Catalysis Letters, 2023, 153, 911-920.	1.4	2
2	Sustainable Routes for the Synthesis of Renewable Adipic Acid from Biomass Derivatives. ChemSusChem, 2022, 15, .	3.6	30
3	Water-mediated catalytic hydrodeoxygenation of biomass. Fuel, 2022, 310, 122242.	3.4	15
4	Hydrodeoxygenation of vanillin to creosol under mild conditions over carbon nanospheres supported palladium catalysts: Influence of the carbon defects on surface of catalysts. Fuel, 2022, 310, 122432.	3.4	11
5	Metal catalyzed hydrosilylation reaction for biomass upgrading. Fuel, 2022, 312, 122836.	3.4	3
6	Magic of hydrogen spillover: Understanding and application. Green Energy and Environment, 2022, 7, 1161-1198.	4.7	70
7	Zirconium-doped enhanced the biomass hydrodeoxygenation over extremely low-loaded Pd catalysts. Fuel, 2022, 315, 123060.	3.4	12
8	Metal@hollow carbon sphere nanoreactors for sustainable biomass and CO ₂ valorization. Journal of Materials Chemistry A, 2022, 10, 7557-7603.	5.2	7
9	Synergistic effect of metal oxidation states and surface acidity enhanced the trace ethylene adsorption of Ag/ZSM-5. New Journal of Chemistry, 2022, 46, 9048-9056.	1.4	1
10	Sustainable biomass hydrodeoxygenation in biphasic systems. Green Chemistry, 2022, 24, 1930-1950.	4.6	24
11	Hydrogen Spilloverâ€Enhanced Heterogeneously Catalyzed Hydrodeoxygenation for Biomass Upgrading. ChemSusChem, 2022, 15, .	3.6	25
12	Self-support semi-hollow carbon nanosphere supported palladium catalyst for biomass upgrading. Renewable Energy, 2022, 191, 101-109.	4.3	6
13	Defective Nâ€Doped Carbon Nanospheres Anchored Pd for Selective Hydrodeoxygenation of Bioâ€Models under Mild Conditions. Energy Technology, 2022, 10, .	1.8	0
14	Defect-rich ZrO2 anchored Pd nanoparticles for selective hydrodeoxygenation of bio-models at room temperature. Fuel, 2022, 318, 123529.	3.4	13
15	Toward efficient heterogeneous catalysts for in-situ hydrodeoxygenation of biomass. Fuel, 2022, 320, 123891.	3.4	13
16	Alcohol-assisted hydrodeoxygenation as a sustainable and cost-effective pathway for biomass derivatives upgrading. Journal of Energy Chemistry, 2022, 73, 133-159.	7.1	28
17	Insights into the catalytic performance of Ni/Nb2O5 catalysts for vanillin hydrodeoxygenation in aqueous phase: The role of Nb2O5 crystal structures. Fuel, 2022, 324, 124400.	3.4	13
18	Slippery Mechanism for Enhancing Separation and Anti-fouling of the Superhydrophobic Membrane in a Water-in-Oil Emulsion: Evaluating Water Adhesion of the Membrane Surface. Langmuir, 2022, 38, 8312-8323.	1.6	8

Hao Li

#	Article	IF	CITATIONS
19	Progress in Effects of Microenvironment of Carbonâ€based Catalysts on Hydrodeoxygenation of Biomass. ChemCatChem, 2021, 13, 1074-1088.	1.8	29
20	State of the Art and Perspectives in Catalytic Conversion Mechanism of Biomass to Bio-aromatics. Energy & Fuels, 2021, 35, 45-62.	2.5	33
21	Transforming biomass tar into a highly active Ni-based carbon-supported catalyst for selective hydrogenation-transalkylation of guaiacol. Journal of Analytical and Applied Pyrolysis, 2021, 153, 104976.	2.6	14
22	Renewable Tar-Derived Pd@biocarbon for Mild and Efficient Selectively Hydrodeoxygenation of Vanillin. Energy & Fuels, 2021, 35, 4169-4181.	2.5	14
23	Enhancing Activity of Ni ₂ P-Based Catalysts by a Yolk–Shell Structure and Transition Metal-Doping for Catalytic Transfer Hydrogenation of Vanillin. Energy & Fuels, 2021, 35, 4158-4168.	2.5	20
24	Controlled Hydrodeoxygenation of Biobased Ketones and Aldehydes over an Alloyed Pd–Zr Catalyst under Mild Conditions. ACS Sustainable Chemistry and Engineering, 2021, 9, 3498-3508.	3.2	44
25	Improved hydrodeoxygenation of bio-oil model compounds with polymethylhydrosiloxane by BrÅ _, nsted acidic zeolites. Fuel, 2021, 290, 119883.	3.4	23
26	Advances in metal/ biochar catalysts for biomass hydro-upgrading: A review. Journal of Cleaner Production, 2021, 303, 126825.	4.6	38
27	Highly Dispersed Pd on Zeolite/Carbon Nanocomposites for Selective Hydrodeoxygenation of Biomass-Derived Molecules under Mild Conditions. ACS Sustainable Chemistry and Engineering, 2021, 9, 9891-9902.	3.2	48
28	Elimination or Removal of Ethylene for Fruit and Vegetable Storage via Low-Temperature Catalytic Oxidation. Journal of Agricultural and Food Chemistry, 2021, 69, 10419-10439.	2.4	9
29	Targeted engineering of metal@hollow carbon spheres as nanoreactors for biomass hydrodeoxygenation. Renewable and Sustainable Energy Reviews, 2021, 151, 111582.	8.2	36
30	Promotional effect of F for Pd/HZSM-5 catalyst on selective HDO of biobased ketones. Renewable Energy, 2021, 179, 1262-1270.	4.3	37
31	Atom Doping Engineering of Metal/Carbon Catalysts for Biomass Hydrodeoxygenation. ACS Sustainable Chemistry and Engineering, 2021, 9, 16531-16555.	3.2	27
32	A review on recent advances in catalytic combustion of chlorinated volatile organic compounds. Journal of Chemical Technology and Biotechnology, 2020, 95, 2069-2082.	1.6	51
33	Synergy Effects between Oxygen Groups and Defects in Hydrodeoxygenation of Biomass over a Carbon Nanosphere Supported Pd Catalyst. ACS Sustainable Chemistry and Engineering, 2020, 8, 15998-16009.	3.2	64
34	Defect Chemistry in Heterogeneous Catalysis: Recognition, Understanding, and Utilization. ACS Catalysis, 2020, 10, 11082-11098.	5.5	324
35	High-Performance Evolution of Ni ₂ P@Hierarchical HZSM-5 as the Guaiacol Hydrodeoxygenation Catalyst. ACS Omega, 2020, 5, 21330-21337.	1.6	9
36	Experimental study and <scp>CFD</scp> numerical simulation of an innovative vapor splitter in dividing wall column. AICHE Journal, 2020, 66, e16266.	1.8	13

Hao Li

#	Article	IF	CITATIONS
37	Atomic-Scale Tuning of Graphene/Cubic SiC Schottky Junction for Stable Low-Bias Photoelectrochemical Solar-to-Fuel Conversion. ACS Nano, 2020, 14, 4905-4915.	7.3	31
38	A review and perspective of recent research in biological treatment applied in removal of chlorinated volatile organic compounds from waste air. Chemosphere, 2020, 250, 126338.	4.2	47
39	PEGylation and macroporous carrier adsorption enabled long-term enzymatic transesterification. New Journal of Chemistry, 2020, 44, 3463-3470.	1.4	6
40	One-Pot Synthesis of Active Carbon-Supported Size-Tunable Ni2P Nanoparticle Catalysts for the Pyrolysis Bio-Oil Upgrade. ACS Omega, 2019, 4, 2075-2080.	1.6	4
41	Experimental Determination and Modeling of Liquid–Liquid Equilibrium for Ternary Mixtures of Ethylene Glycol + 1,2-Butanediol + 3-Heptanone or Anisole. Journal of Chemical & Engineering Data, 2019, 64, 1780-1790.	1.0	5
42	Hydrodeoxygenation of vanillin as model compound for pyrolysis oil over carboxylic carbon nanotubes-supported Ni catalysts. Bioresource Technology Reports, 2019, 5, 86-90.	1.5	13
43	Promotional effect of doping Cu into cerium-titanium binary oxides catalyst for deep oxidation of gaseous dichloromethane. Chemosphere, 2019, 214, 553-562.	4.2	35
44	Isobaric Vapor–Liquid Equilibrium Data for the Acetone + Hexamethyl Disiloxane + Ethyl Acetate Ternary System at 101.3 kPa: Determination and Correlation. Journal of Chemical & Engineering Data, 2018, 63, 3621-3627.	1.0	3
45	Effect of pyrolysis temperature on characteristics and aromatic contaminants adsorption behavior of magnetic biochar derived from pyrolysis oil distillation residue. Bioresource Technology, 2017, 223, 20-26.	4.8	117
46	Thermogravimetric investigation of the co-combustion between the pyrolysis oil distillation residue and lignite. Bioresource Technology, 2016, 218, 615-622.	4.8	40
47	Experimental and computational study on the compatibility of biodiesel/diesel/methanol blended fuel. Fuel, 2016, 173, 52-59.	3.4	15
48	Upgrading fast pyrolysis oil: Solvent–anti-solvent extraction and blending with diesel. Energy Conversion and Management, 2016, 110, 378-385.	4.4	33
49	Isobaric (vapour+liquid) equilibria of binary systems containing butyl acetate for the separation of methoxy aromatic compounds (anisole and guaiacol) from biomass fast pyrolysis oil. Journal of Chemical Thermodynamics, 2015, 87, 141-146.	1.0	13
50	Stability evaluation of fast pyrolysis oil from rice straw. Chemical Engineering Science, 2015, 135, 258-265.	1.9	23
51	Isobaric (vapour+liquid) equilibria for three binary systems (toluene+anisole, n-butylbenzene+anisole,) Tj ETQq1	1 0,78431 1.4	4 rgBT /Overl