Sumod A Pullarkat

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4382928/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Palladium(ii)-catalyzed asymmetric hydrophosphination of enones: efficient access to chiral tertiary phosphines. Chemical Communications, 2010, 46, 6950.	2.2	128
2	Direct Synthesis of Chiral Tertiary Diphosphines <i>via</i> Pd(II)-Catalyzed Asymmetric Hydrophosphination of Dienones. Organic Letters, 2011, 13, 5862-5865.	2.4	116
3	Palladacycle-Catalyzed Asymmetric Hydrophosphination of Enones for Synthesis of C*- and P*-Chiral Tertiary Phosphines. Inorganic Chemistry, 2012, 51, 2533-2540.	1.9	98
4	Efficient Iridium-Thioether-Dithiolate Catalyst for β-Alkylation of Alcohols and Selective Imine Formation via N-Alkylation Reactions. Organometallics, 2011, 30, 6499-6502.	1.1	87
5	Unsymmetrical β-diketiminate magnesium(<scp>i</scp>) complexes: syntheses and application in catalytic hydroboration of alkyne, nitrile and carbonyl compounds. Organic Chemistry Frontiers, 2018, 5, 3538-3547.	2.3	83
6	Ytterbium-Catalyzed Hydroboration of Aldehydes and Ketones. Journal of Organic Chemistry, 2018, 83, 69-74.	1.7	74
7	Asymmetric Synthesis of Enaminophosphines via Palladacycle-Catalyzed Addition of Ph ₂ PH to α,β-Unsaturated Imines. Journal of Organic Chemistry, 2012, 77, 6849-6854.	1.7	71
8	Palladacycle-Catalyzed Asymmetric Intermolecular Construction of Chiral Tertiary P-Heterocycles by Stepwise Addition of H–P–H Bonds to Bis(enones). Organometallics, 2012, 31, 4871-4875.	1.1	67
9	Recent Progress in Palladium-Catalyzed Asymmetric HydrophosÂphination. Synthesis, 2016, 48, 493-503.	1.2	65
10	Chiral Phosphapalladacycles as Efficient Catalysts for the Asymmetric Hydrophosphination of Substituted Methylidenemalonate Esters: Direct Access to Functionalized Tertiary Chiral Phosphines. Organometallics, 2012, 31, 3022-3026.	1.1	63
11	Chiral Metal Complex-Promoted Asymmetric Hydrophosphinations. Topics in Organometallic Chemistry, 2011, , 145-166.	0.7	55
12	Enantioselective Addition of Diphenylphosphine to 3â€Methylâ€4â€nitroâ€5â€alkenylisoxazoles. Advanced Synthesis and Catalysis, 2013, 355, 1403-1408.	2.1	55
13	Asymmetric 1,4-Conjugate Addition of Diarylphosphines to α,β,γ,δ-Unsaturated Ketones Catalyzed by Transition-Metal Pincer Complexes. Organometallics, 2015, 34, 5196-5201.	1.1	51
14	Palladium catalyzed asymmetric hydrophosphination of α,β- and α,β,γ,β-unsaturated malonate esters – efficient control of reactivity, stereo- and regio-selectivity. Dalton Transactions, 2015, 44, 1258-1263.	1.6	49
15	Catalyst-free and Solvent-free Cyanosilylation and Knoevenagel Condensation of Aldehydes. ACS Sustainable Chemistry and Engineering, 2019, 7, 1718-1722.	3.2	49
16	Enantioselective phospha-Michael addition of diarylphosphines to β,γ-unsaturated α-ketoesters and amides. Chemical Communications, 2014, 50, 8768-8770.	2.2	46
17	A Novel Approach toward Asymmetric Synthesis of Alcohol Functionalized C-Chiral Diphosphines via Two-Stage Hydrophosphination of Terminal Alkynols. Inorganic Chemistry, 2006, 45, 7455-7463.	1.9	42
18	Low-valent magnesium(<scp>i</scp>)-catalyzed cyanosilylation of ketones. Chemical Communications, 2018, 54, 3042-3044.	2.2	42

#	Article	IF	CITATIONS
19	Catalyst-free and solvent-free hydroboration of ketones. New Journal of Chemistry, 2019, 43, 10744-10749.	1.4	42
20	Highly Enantioselective Synthesis of (2-Pyridyl)phosphine Based C-Chiral Unsymmetrical P,N-Ligands Using a Chiral Palladium Complex. Organometallics, 2009, 28, 3941-3946.	1.1	40
21	One-pot \hat{l}^2 -alkylation of secondary alcohols with primary alcohols catalyzed by ruthenacycles. Tetrahedron Letters, 2012, 53, 1450-1455.	0.7	39
22	Versatile Syntheses of Optically Pure PCE Pincer Ligands: Facile Modifications of the Pendant Arms and Ligand Backbones. Organometallics, 2015, 34, 1582-1588.	1.1	39
23	Alkali Additives Enable Efficient Large Area (>55 cm ²) Slotâ€Đie Coated Perovskite Solar Modules. Advanced Functional Materials, 2022, 32, .	7.8	39
24	The synthesis and efficient one-pot catalytic "self-breeding―of asymmetrical NC(sp ³)E-hybridised pincer complexes. Chemical Communications, 2016, 52, 4211-4214.	2.2	38
25	Pdâ€Catalyzed Enantiodivergent and Regiospecific <i>phospha</i> â€Michael Addition of Diphenylphosphine to 4â€ <i>oxo</i> â€Enamides: Efficient Access to Chiral Phosphinocarboxamides and Their Analogues. Chemistry - A European Journal, 2015, 21, 4800-4804.	1.7	35
26	Novel Stereochemistry, Reactivity, and Stability of an Arsenic Heterocycle in a Metal-Promoted Asymmetric Cycloaddition Reaction. Inorganic Chemistry, 2007, 46, 9488-9494.	1.9	34
27	Palladacycle atalyzed Tandem Allylic Amination/Allylation Protocol for Oneâ€Pot Synthesis of 2â€Allylanilines from Allylic Alcohols. Advanced Synthesis and Catalysis, 2012, 354, 83-87.	2.1	34
28	Asymmetric Synthesis of Diphosphine Ligands Containing Phosphorus and Carbon Stereogenic Centers by Means of a Chiral Palladium Complex Promoted Hydrophosphination Reaction. Inorganic Chemistry, 2009, 48, 5535-5539.	1.9	33
29	Sterically bulky amido magnesium methyl complexes: syntheses, structures and catalysis. RSC Advances, 2017, 7, 45401-45407.	1.7	33
30	Domino cyclization–alkylation protocol for the synthesis of 2,3-functionalized indoles from o-alkynylanilines and allylic alcohols. Organic and Biomolecular Chemistry, 2012, 10, 3875.	1.5	30
31	Asymmetric Synthesis of Functionalized 1,2-Diphosphine via the Chemoselective Hydrophosphination of Coordinated Allylic Phosphines. Organometallics, 2009, 28, 780-786.	1.1	29
32	Asymmetric Synthesis of New Diphosphines and Pyridylphosphines via a Kinetic Resolution Process Promoted and Controlled by a Chiral Palladacycle. Organometallics, 2010, 29, 3374-3386.	1.1	29
33	N-Heterocyclic Carbene C,S Palladium(II) π-Allyl Complexes: Synthesis, Characterization, and Catalytic Application In Allylic Amination Reactions. Organometallics, 2013, 32, 2389-2397.	1.1	28
34	Desymmetrization of Achiral Heterobicyclic Alkenes through Catalytic Asymmetric Hydrophosphination. Chemistry - an Asian Journal, 2018, 13, 2829-2833.	1.7	28
35	Palladacycle Catalyzed Asymmetric PH Addition of Diarylphosphines to <i>N</i> â€Enoyl Phthalimides. Chemistry - A European Journal, 2014, 20, 14514-14517.	1.7	27
36	Asymmetric Synthesis of Functionalized 1,3-Diphosphines via Chiral Palladium Complex Promoted Hydrophosphination of Activated Olefins. Inorganic Chemistry, 2010, 49, 989-996.	1.9	26

#	Article	IF	CITATIONS
37	Palladium Template Promoted Asymmetric Synthesis of 1,2-Diphosphines by Hydrophosphination of Functionalized Allenes. Organometallics, 2010, 29, 536-542.	1.1	26
38	Metal Effects on the Asymmetric Cycloaddition Reaction between 3,4-Dimethyl-1-phenylarsole and Diphenylvinylphosphine Oxide. Organometallics, 2009, 28, 4886-4889.	1.1	25
39	Mechanistic insights into the role of PC- and PCP-type palladium catalysts in asymmetric hydrophosphination of activated alkenes incorporating potential coordinating heteroatoms. Dalton Transactions, 2016, 45, 13449-13455.	1.6	25
40	Chiral cyclopalladated complex promoted asymmetric synthesis of diester-substituted P,N-ligands via stepwise hydrophosphination and hydroamination reactions. Dalton Transactions, 2012, 41, 5391.	1.6	24
41	A tandem Heck–aza-Michael addition protocol for the one-pot synthesis of isoindolines from unprotected amines. Organic and Biomolecular Chemistry, 2012, 10, 6600.	1.5	24
42	Copper(II) Triflate Catalyzed Allylic Arylation of Allylic Alcohols: Direct and Selective Access to <i>C</i> â€Allylanilines. ChemCatChem, 2013, 5, 3882-3888.	1.8	24
43	Catalytic Asymmetric Diarylphosphine Addition to α-Diazoesters for the Synthesis of P-Stereogenic Phosphinates via P*—N Bond Formation. Journal of Organic Chemistry, 2020, 85, 14763-14771.	1.7	24
44	Evaluation of Palladacycles as a Nonâ€Rhodium Based Alternative for the Asymmetric Conjugate 1,4â€Addition of Arylboronic Acids to α,βâ€Unsaturated Enones. Advanced Synthesis and Catalysis, 2014, 356, 3391-3400.	2.1	23
45	Enantioselective Dielsâ^'Alder Reaction of 3-Diphenylphosphinofuran with 1-Phenyl-3,4-dimethylphosphole and Subsequent Synthetic Manipulations of the Cycloadduct. Organometallics, 2009, 28, 6254-6259.	1.1	22
46	Steric effects on the control of endo/exo-selectivity in the asymmetric cycloaddition reaction of 3,4-dimethyl-1-phenylarsole. Dalton Transactions, 2010, 39, 5453.	1.6	22
47	Stereoelectronic and Catalytic Properties of Chiral Cyclometalated Phospha-palladium and -platinum Complexes. Organometallics, 2014, 33, 6053-6058.	1.1	22
48	Asymmetric Construction of a Ferrocenyl Phosphapalladacycle from Achiral Enones and a Demonstration of Its Catalytic Potential. Organometallics, 2014, 33, 5074-5076.	1.1	20
49	Grignard reagents-catalyzed hydroboration of aldehydes and ketones. Tetrahedron, 2020, 76, 131145.	1.0	20
50	Asymmetric synthesis of a chiral hetero-bidentate As–P ligand containing both As and P-stereogenic centres. Journal of Organometallic Chemistry, 2008, 693, 3289-3294.	0.8	19
51	Asymmetric synthesis of 1,2-bis(diphenylphosphino)-1-phenylethane via a chiral palladium template promoted hydrophosphination reaction. Journal of Organometallic Chemistry, 2009, 694, 3500-3505.	0.8	19
52	Novel Synthesis of Chiral 1,3-Diphosphines via Palladium Template Promoted Hydrophosphination and Functional Group Transformation Reactions. Organometallics, 2010, 29, 3582-3588.	1.1	19
53	Asymmetric Catalytic 1,2â€Dihydrophosphination of Secondary 1,2â€Diphosphines – Direct Access to Free <i>P</i> *―and <i>P</i> *, <i>C</i> *â€Diphosphines. Advanced Synthesis and Catalysis, 2020, 362, 2373-2378.	2.1	19
54	Design, Synthesis, and Stereochemical Evaluation of a Novel Chiral Amine–Palladacycle. European Journal of Inorganic Chemistry, 2008, 2008, 1880-1891.	1.0	18

#	Article	IF	CITATIONS
55	Rational Design of a Novel Chiral Palladacycle: Synthesis, Optical Resolution, and Stereochemical Evaluation. European Journal of Inorganic Chemistry, 2009, 2009, 267-276.	1.0	17
56	Novel Enantioselective Synthesis of Functionalized Pyridylarsanes by a Chiral Palladium Template Promoted Asymmetric Hydroarsanation Reaction. European Journal of Inorganic Chemistry, 2009, 2009, 4134-4140.	1.0	17
57	Synthesis and Characterisation of a Novel Chiral Bidentate Pyridine-N-Heterocyclic Carbene-Based Palladacycle. European Journal of Inorganic Chemistry, 2010, 2010, 1413-1418.	1.0	17
58	Asymmetric hydroarsination reactions toward synthesis of alcohol functionalised C-chiral As–P ligands promoted by chiral cyclometallated complexes. Journal of Organometallic Chemistry, 2012, 696, 4215-4220.	0.8	17
59	Efficient and stereoselective synthesis of monomeric and bimetallic pincer complexes containing Pd-bonded stereogenic carbons. RSC Advances, 2016, 6, 75951-75959.	1.7	17
60	Asymmetric synthesis of a P-chiral heteroditopic ligand via chiral metal template promoted cycloaddition between 3,4-dimethyl-1-phenylphosphole and its sulfonated analog. Journal of Organometallic Chemistry, 2006, 691, 3083-3088.	0.8	16
61	Development of a novel chiral palladacycle and its application in asymmetric hydrophosphination reaction. Dalton Transactions, 2014, 43, 5777-5784.	1.6	16
62	Nickel catalyzed enantioselective hydroarsination of nitrostyrene. Chemical Communications, 2017, 53, 6307-6310.	2.2	16
63	Organoplatinum Complex Promoted the Asymmetric <i>Endo</i> Stereochemically Controlled Dielsâ~Alder Reaction between 3-Diphenylphosphinofuran and Diphenylvinylphosphine. Inorganic Chemistry, 2009, 48, 11394-11398.	1.9	15
64	Synthesis of a Chiral Palladacycle and Its Application in Asymmetric Hydrophosphanation Reactions. European Journal of Inorganic Chemistry, 2010, 2010, 4427-4437.	1.0	15
65	Synthesis, Structural Characterisation and Stereochemical Investigation of Chiral Sulfurâ€Functionalised Nâ€Heterocyclic Carbene Complexes of Palladium and Platinum. Chemistry - A European Journal, 2013, 19, 5468-5475.	1.7	15
66	Synthesis of Stereoprojecting, Chiral N-C(sp ³)-E Type Pincer Complexes. Organometallics, 2018, 37, 2272-2285.	1.1	15
67	Investigating palladium pincer complexes in catalytic asymmetric hydrophosphination and hydroarsination. Dalton Transactions, 2019, 48, 4602-4610.	1.6	15
68	Enantioselective, High‥ielding Synthesis of Alcoholâ€Functionalized Diphosphanes Utilizing Asymmetric Control with a Chiral Auxiliary. European Journal of Inorganic Chemistry, 2009, 2009, 2375-2382.	1.0	14
69	Controllable synthesis of P-chiral 1,2- and 1,3-diphosphines via asymmetric Diels–Alder reactions involving functionalized allylic phosphines as dienophiles. Dalton Transactions, 2009, , 3668.	1.6	14
70	Palladacycle promoted asymmetric hydrophosphination of α,β-unsaturated sulfonyl fluorides. Journal of Organometallic Chemistry, 2019, 899, 120912.	0.8	14
71	Evaluation of ferrocenyl phosphines a <i>s potent antimalarials</i> targeting the digestive vacuole function of <i>Plasmodium falciparum</i> . Dalton Transactions, 2019, 48, 1108-1117.	1.6	14
72	Catalytic Approach toward Chiral P,N-Chelate Complexes Utilizing the Asymmetric Hydrophosphination Protocol. Inorganic Chemistry, 2020, 59, 3874-3886.	1.9	14

#	Article	IF	CITATIONS
73	Synthesis, Coordination Characteristics, Conformational Behavior, and Bond Reactivity Studies of a Novel Chiral Phosphapalladacycle Complex. Organometallics, 2009, 28, 4358-4370.	1.1	12
74	Stereogenic Lock in 1-Naphthylethanamine Complexes for Catalyst and Auxiliary Design: Structural and Reactivity Analysis for Cycloiridated Pseudotetrahedral Complexes. Organometallics, 2018, 37, 99-106.	1.1	12
75	Asymmetric Synthesis of P-Stereogenic Homo- and Heterobimetallic Complexes via Selective Monoinsertion of Dialkynylphosphine into the Pdâ^'C Bond of a Palladacycle. Organometallics, 2011, 30, 1530-1550.	1.1	11
76	Synthesis of Homo―and Heteroâ€Bimetallic Arsenic Complexes by Means of Regioselective Monoinsertion of Alkynylarsane into the Pd–C Bond of a Palladacycle. European Journal of Inorganic Chemistry, 2011, 2011, 3111-3121.	1.0	11
77	Inducing thermoreversible optical transitions in urethane-acrylate systems <i>via</i> ionic liquid incorporation for stretchable smart devices. Journal of Materials Chemistry A, 2021, 9, 13615-13624.	5.2	11
78	Synthesis, Spectral, Thermal and CO2 Absorption Studies on Birnessites Type Layered MnO6 Oxide. Transition Metal Chemistry, 2006, 31, 429-433.	0.7	10
79	Synthesis, Optical Resolution, and Stereochemical Properties of a Rationally Designed Chiral C–N Palladacycle. Organometallics, 2014, 33, 930-940.	1.1	10
80	A One-Pot Diastereoselective Self Assembly of C-Stereogenic Copper(I) Diphosphine Clusters. Inorganic Chemistry, 2014, 53, 10232-10239.	1.9	10
81	Efficient access to a designed phosphapalladacycle catalyst via enantioselective catalytic asymmetric hydrophosphination. Dalton Transactions, 2017, 46, 1311-1316.	1.6	10
82	Câ^'As Bond Formation Reactions for the Preparation of Organoarsenic(III) Compounds. Chemistry - an Asian Journal, 2020, 15, 2428-2436.	1.7	10
83	Access to a Chiral Phosphine–NHC Palladium(II) Complex via the Asymmetric Hydrophosphination of Achiral Vinyl Azoles. Organometallics, 2021, 40, 2118-2122.	1.1	10
84	Palladium-promoted asymmetric cycloaddition reaction of arsole via an unusual exo–endo stereochemically controlled method. Journal of Organometallic Chemistry, 2014, 756, 34-37.	0.8	9
85	Palladacycle promoted base controlled regio- and enantioselective hydrophosphination of 2-pyridylacrylate/amide and the cytotoxicity of their gold complexes. Dalton Transactions, 2015, 44, 17557-17564.	1.6	9
86	Template effects on the asymmetric cycloaddition reaction between 3,4-dimethyl-1-phenylarsole and diphenylvinylphosphine and their arsenic elimination reaction. Journal of Organometallic Chemistry, 2009, 694, 1929-1933.	0.8	8
87	Reactivity of Cycloplatinated Amine Complexes: Intramolecular C–C Bond Formation, C–H Activation, and PPh ₂ Migration in Coordinated Alkynylphosphines. Organometallics, 2012, 31, 8407-8413.	1.1	8
88	Asymmetric synthesis of a chiral diarsine ligand via a cycloaddition reaction between 3,4-dimethyl-1-phenylarsole and diphenylvinylarsine. Tetrahedron: Asymmetry, 2014, 25, 1100-1103.	1.8	8
89	Computational and carbon-13 NMR studies of Pt–C bonds in P–C–P pincer complexes. Dalton Transactions, 2016, 45, 2095-2101.	1.6	8
90	Triflic-Acid-Catalyzed Tandem Allylic Substitution–Cyclization Reaction of Alcohols with Thiophenols—Facile Access to Polysubstituted Thiochromans. ACS Omega, 2018, 3, 8945-8951.	1.6	8

#	Article	IF	CITATIONS
91	Metal Effects on the Asymmetric Synthesis of a New Heterobidentate As/P=S Ligand. European Journal of Inorganic Chemistry, 2010, 2010, 1865-1871.	1.0	7
92	Syntheses of Bimetallic Zwitterionic Complexes Containing Stereogenic Bifunctionalized Phosphine through Stepwise Insertion and Hydration Reactions. Organometallics, 2010, 29, 893-903.	1.1	7
93	Chiral palladacycle promoted asymmetric synthesis of functionalized bis-phosphine monoxide ligand. Journal of Organometallic Chemistry, 2011, 696, 709-714.	0.8	7
94	Access to <i>C</i> -Stereogenic PN(<i>sp</i> ²)P Pincer Ligands via Phosphapalladacycle Catalyzed Asymmetric Hydrophosphination. Organometallics, 2021, 40, 682-692.	1.1	7
95	Bis(allyl)ruthenium(iv)-initiated S - S and C - S Bond Cleavages in Tetraalkylthiuram Sulfides. Formation and X-ray Crystal Structures of Dithiocarbamato Complexes. Australian Journal of Chemistry, 2009, 62, 1537.	0.5	6
96	Synthesis and Characterization of Conformationally Rigid Chiral Pyridine–Nâ€Heterocyclic Carbeneâ€Based Palladacycles with an Unexpected Pd–N Bond Cleavage. Chirality, 2013, 25, 149-159.	1.3	6
97	Mechanistic Insights into the PdII-Catalyzed ChemoselectiveN-Demethylation vs. Cyclometalation Reactivity Pathways in 1-Aryl-N,N-dimethylethanamines. European Journal of Inorganic Chemistry, 2014, 2014, 5046-5052.	1.0	6
98	Tandem double hydrophosphination of α,β,γ,Î′-unsaturated-1,3-indandiones: diphosphine synthesis, mechanistic investigations and coordination chemistry. Chemical Communications, 2019, 55, 10936-10939.	2.2	6
99	Palladacycle mediated synthesis of cyano-functionalized chiral 1,2-diphosphine and subsequent functional group transformations. Journal of Organometallic Chemistry, 2011, 696, 905-912.	0.8	5
100	Highly Regioselective Introduction of Aryl Substituents via Asymmetric 1,4-Addition of Boronic Acids to Linear l±,l²,l³,l´-Unsaturated Ketones. Synlett, 2016, 27, 254-258.	1.0	5
101	Catalytic asymmetric synthesis of Pt- and Pd-PCP pincer complexes bearing a para-N pyridinyl backbone. Journal of Organometallic Chemistry, 2018, 862, 22-27.	0.8	5
102	Efficient Synthesis of Malonate Functionalized Chiral Phosphapalladacycles and their Catalytic Evaluation in Asymmetric Hydrophosphination of Chalcone. European Journal of Inorganic Chemistry, 2018, 2018, 4385-4390.	1.0	5
103	Screening of ferrocenyl–phosphines identifies a gold-coordinated derivative as a novel anticancer agent for hematological malignancies. RSC Advances, 2018, 8, 28960-28968.	1.7	5
104	Catalytic and Mechanistic Developments of the Nickel(II) Pincer Complex atalyzed Hydroarsination Reaction. Chemistry - A European Journal, 2019, 25, 11308-11317.	1.7	5
105	Chelating Phosphine–N-Heterocyclic Carbene Platinum Complexes via Catalytic Asymmetric Hydrophosphination and Their Cytotoxicity Toward MKN74 and MCF7 Cancer Cell Lines. Inorganic Chemistry, 2021, 60, 17276-17287.	1.9	5
106	Intermolecular Insertion of Dialkynylphosphanes into the M-C Bond of Cyclopalladated Rings through Activation by Cyclometallated Amines. European Journal of Inorganic Chemistry, 2012, 2012, 1823-1831.	1.0	4
107	Stability and Reactivity of Cyclometallated Naphthylamine Complexes in Pd–C Bond Insertion Reactions with Coordinated Alkynylphosphanes. European Journal of Inorganic Chemistry, 2013, 2013, 5487-5494.	1.0	4
108	Palladacyclo-promoted asymmetric hydrophosphination reaction between diphenylphosphine and 2-ethynylpyridine. Journal of Organometallic Chemistry, 2016, 801, 1-5.	0.8	4

#	Article	IF	CITATIONS
109	Challenges in cyclometalation: steric effects leading to competing pathways and η ¹ ,η ² -cyclometalated iridium(<scp>iii</scp>) complexes. Dalton Transactions, 2018, 47, 13046-13051.	1.6	4
110	Air-stable phosphine organocatalysts for the hydroarsination reaction. Journal of Organometallic Chemistry, 2020, 914, 121216.	0.8	4
111	Catalytic Asymmetric Hydrophosphination as a Valuable Tool to Access Dihydrophosphinated Curcumin and Its Derivatives. Organometallics, 2021, 40, 3454-3461.	1.1	4
112	Kinetic resolution of racemic 5-alkylcyclohexenones via Pd(<scp>ii</scp>)-catalyzed 1,4-additions of arylboronic acids – access to trans 3-alkyl-5-arylcyclohexanones. Organic Chemistry Frontiers, 2015, 2, 1059-1065.	2.3	3
113	Divergent Reactivity of Phosphapalladacycles toward E–H (E = N, P, As) Bonds. Organometallics, 2020, 39, 182-188.	1.1	3
114	Metal Effects on the Asymmetric Cycloaddition Reaction between 3,4-Dimethyl-1-phenylphosphole and Sulfoxide. Organometallics, 2015, 34, 5081-5087.	1.1	2
115	Chemoselective Synthesis and Evaluation of β-Oxovinylarsines as an Arsenic Synthetic Precursor. Organometallics, 2020, 39, 271-278.	1.1	2
116	Catalytic access to ferrocenyl phosphines bearing both planar and central chirality – A kinetic resolution approach via catalytic asymmetric P(III)–C bond formation. Tetrahedron, 2020, 76, 131259.	1.0	2
117	New thioether–dithiolate complexes of Cpâ^—Ir and some reactivity features. Journal of Organometallic Chemistry, 2012, 696, 4207-4214.	0.8	1
118	Metal effects on the asymmetric syntheses of chiral Pâ^'N bidentate ligands. Journal of Organometallic Chemistry, 2016, 824, 99-103.	0.8	0