
Agris BÄ"rziÅÅ;

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4382768/publications.pdf Version: 2024-02-01

Δορις ΒΑ΄ ρτιΔ+Δ:

#	Article	IF	CITATIONS
1	On the Formation of Droperidol Solvates: Characterization of Structure and Properties. Crystal Growth and Design, 2014, 14, 2654-2664.	3.0	61
2	Synthesis of Nanofibrillated Cellulose by Combined Ammonium Persulphate Treatment with Ultrasound and Mechanical Processing. Nanomaterials, 2018, 8, 640.	4.1	55
3	Structural Characterization and Rationalization of Formation, Stability, and Transformations of Benperidol Solvates. Crystal Growth and Design, 2015, 15, 2337-2351.	3.0	38
4	On the Formation and Desolvation Mechanism of Organic Molecule Solvates: A Structural Study of Methyl Cholate Solvates. Crystal Growth and Design, 2017, 17, 5712-5724.	3.0	31
5	Single Enantiomer's Urge to Crystallize in Centrosymmetric Space Groups: Solid Solutions of Phenylpiracetam. Crystal Growth and Design, 2017, 17, 1411-1418.	3.0	27
6	Comparison and Rationalization of Droperidol Isostructural Solvate Stability: An Experimental and Computational Study. Crystal Growth and Design, 2014, 14, 3639-3648.	3.0	24
7	Detailed Analysis of Packing Efficiency Allows Rationalization of Solvate Formation Propensity for Selected Structurally Similar Organic Molecules. Crystal Growth and Design, 2018, 18, 2040-2045.	3.0	24
8	Polymorphism of R-Encenicline Hydrochloride: Access to the Highest Number of Structurally Characterized Polymorphs Using Desolvation of Various Solvates. Crystal Growth and Design, 2019, 19, 4765-4773.	3.0	22
9	Solid-state NMR and computational investigation of solvent molecule arrangement and dynamics in isostructural solvates of droperidol. Solid State Nuclear Magnetic Resonance, 2015, 65, 12-20.	2.3	21
10	Why Do Chemically Similar Pharmaceutical Molecules Crystallize in Different Structures: A Case of Droperidol and Benperidol. Crystal Growth and Design, 2016, 16, 1643-1653.	3.0	17
11	A Maze of Solid Solutions of Pimobendan Enantiomers: An Extraordinary Case of Polymorph and Solvate Diversity. Crystal Growth and Design, 2018, 18, 264-273.	3.0	17
12	On the structural aspects of solid solutions of enantiomers: an intriguing case study of enantiomer recognition in the solid state. CrystEngComm, 2018, 20, 6909-6918.	2.6	16
13	Hexamorphism of Dantrolene: Insight into the Crystal Structures, Stability, and Phase Transformations. Crystal Growth and Design, 2021, 21, 1190-1201.	3.0	16
14	Dehydration of mildronate dihydrate: a study of structural transformations and kinetics. CrystEngComm, 2014, 16, 3926.	2.6	15
15	On the Rationalization of Formation of Solvates: Experimental and Computational Study of Solid Forms of Several Nitrobenzoic Acid Derivatives. Crystal Growth and Design, 2020, 20, 5767-5784.	3.0	15
16	Formation and Transformations of Organic Salt Hydrates: Four Encenicline Hydrochloride Monohydrates and Respective Isostructural Desolvates. Crystal Growth and Design, 2018, 18, 2100-2111.	3.0	13
17	Hydration and dehydration kinetics of xylazine hydrochloride. Pharmaceutical Development and Technology, 2009, 14, 388-399.	2.4	10
18	The relative stability of xylazine hydrochloride polymorphous forms. Pharmaceutical Development and Technology, 2010, 15, 217-222.	2.4	9

Agris BÄ"rziņÅi

#	Article	IF	CITATIONS
19	Three anhydrous forms and a dihydrate form of quifenadine hydrochloride: a structural study of the thermodynamic stability and dehydration mechanism. CrystEngComm, 2015, 17, 3627-3635.	2.6	8
20	Polymorphs and Hydrates of Sequifenadine Hydrochloride: Crystallographic Explanation of Observed Phase Transitions and Thermodynamic Stability. Crystal Growth and Design, 2017, 17, 1146-1158.	3.0	8
21	Structure and Stability of Racemic and Enantiopure Pimobendan Monohydrates: On the Phenomenon of Unusually High Stability. Crystal Growth and Design, 2017, 17, 1814-1823.	3.0	7
22	Effect of Experimental and Sample Factors on Dehydration Kinetics of Mildronate Dihydrate: Mechanism of Dehydration and Determination of Kinetic Parameters. Journal of Pharmaceutical Sciences, 2014, 103, 1747-1755.	3.3	6
23	Solid Solutions in the Xanthone–Thioxanthone Binary System: How Well Are Similar Molecules Discriminated in the Solid State?. Crystal Growth and Design, 2020, 20, 7997-8004.	3.0	6
24	Crystal Structures of New Ivermectin Pseudopolymorphs. Crystals, 2021, 11, 172.	2.2	6
25	Chemical and physical modification of hemp fibres by steam explosion technology. IOP Conference Series: Materials Science and Engineering, 2013, 49, 012053.	0.6	5
26	Speciation of Substituted Benzoic Acids in Solution: Evaluation of Spectroscopic and Computational Methods for the Identification of Associates and Their Role in Crystallization. Crystal Growth and Design, 2021, 21, 4823-4836.	3.0	5
27	Fine-Tuning Solid State Luminescence Properties of Organic Crystals via Solid Solution Formation: The Example of 4-Iodothioxanthone–4-Chlorothioxanthone System. Crystal Growth and Design, 2022, 22, 4838-4844.	3.0	5
28	Prediction of Solid Solution Formation among Chemically Similar Molecules Using Calculation of Lattice and Intermolecular Interaction Energy. Key Engineering Materials, 0, 850, 54-59.	0.4	4
29	A new methodology for the simulation of solid state phase transition kinetics by combination of nucleation and nuclei growth processes. Journal of Mathematical Chemistry, 2012, 50, 2120-2129.	1.5	3
30	Combined Use of Structure Analysis, Studies of Molecular Association in Solution, and Molecular Modelling to Understand the Different Propensities of Dihydroxybenzoic Acids to Form Solid Phases. Pharmaceutics, 2021, 13, 734.	4.5	3
31	Evaluation of Aspects Controlling Crystallization of Nitrofurantoin. Key Engineering Materials, 2019, 800, 9-13.	0.4	1
32	Computional studies of droperidol/benperidol solid-solution phase formation. Acta Crystallographica Section A: Foundations and Advances, 2018, 74, e348-e348.	0.1	1
33	The relative stability of xylazine hydrochloride polymorphous forms. Pharmaceutical Development and Technology, 2009, 00, 090730043016078-6.	2.4	1
34	Computational Study of Association of Dihydroxybenzoic Acids in Solution: Testing the Molecular Self-Association Computational Methodology for Formation of Binary Systems. Key Engineering Materials, 2020, 850, 207-212.	0.4	0
35	Influence of Crystallization Additives on Morphology of Selected Benzoic Acids - A Molecular Dynamics (MD) Simulation Study. Key Engineering Materials, 0, 903, 22-27.	0.4	0