
Naoyuki Kawao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4382148/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Renal failure suppresses muscle irisin expression, and irisin blunts cortical bone loss in mice. Journal of Cachexia, Sarcopenia and Muscle, 2022, 13, 758-771.	7.3	18
2	Role of Macrophages and Plasminogen Activator Inhibitor-1 in Delayed Bone Repair Induced by Glucocorticoids in Mice. International Journal of Molecular Sciences, 2022, 23, 478.	4.1	3
3	Role of peripheral myelin protein 22 in chronic exerciseâ€induced interactions of muscle and bone in mice. Journal of Cellular Physiology, 2022, 237, 2492-2502.	4.1	3
4	MicroRNA-196a-5p in Extracellular Vesicles Secreted from Myoblasts Suppresses Osteoclast-like Cell Formation in Mouse Cells. Calcified Tissue International, 2021, 108, 364-376.	3.1	24
5	Role of irisin in effects of chronic exercise on muscle and bone in ovariectomized mice. Journal of Bone and Mineral Metabolism, 2021, 39, 547-557.	2.7	14
6	Influence of Angptl1 on osteoclast formation and osteoblastic phenotype in mouse cells. BMC Musculoskeletal Disorders, 2021, 22, 398.	1.9	2
7	Effects of fluid flow shear stress to mouse muscle cells on the bone actions of muscle cell-derived extracellular vesicless. PLoS ONE, 2021, 16, e0250741.	2.5	12
8	Serpinb1a suppresses osteoclast formation. Biochemistry and Biophysics Reports, 2021, 26, 101004.	1.3	3
9	Role of plasminogen activator inhibitor-1 in muscle wasting induced by a diabetic state in female mice. Endocrine Journal, 2021, 68, 1421-1428.	1.6	1
10	Role of Dkk2 in the Muscle/bone Interaction of Androgen-Deficient Mice. Experimental and Clinical Endocrinology and Diabetes, 2021, 129, 770-775.	1.2	3
11	Role of tissue factor in delayed bone repair induced by diabetic state in mice. PLoS ONE, 2021, 16, e0260754.	2.5	1
12	Role of irisin in androgen-deficient muscle wasting and osteopenia in mice. Journal of Bone and Mineral Metabolism, 2020, 38, 161-171.	2.7	25
13	Myonectin inhibits the differentiation of osteoblasts and osteoclasts in mouse cells. Heliyon, 2020, 6, e03967.	3.2	3
14	Roles of Olfactomedin 1 in Muscle and Bone Alterations Induced by Gravity Change in Mice. Calcified Tissue International, 2020, 107, 180-190.	3.1	10
15	PAI-1 is involved in delayed bone repair induced by glucocorticoids in mice. Bone, 2020, 134, 115310.	2.9	11
16	Extracellular vesicles secreted from mouse muscle cells suppress osteoclast formation: Roles of mitochondrial energy metabolism. Bone, 2020, 134, 115298.	2.9	28
17	Roles of Dkk2 in the Linkage from Muscle to Bone during Mechanical Unloading in Mice. International Journal of Molecular Sciences, 2020, 21, 2547.	4.1	17
18	Roles of the vestibular system in obesity and impaired glucose metabolism in high-fat diet-fed mice. PLoS ONE, 2020, 15, e0228685.	2.5	7

Ναογμκι Κάψαο

#	Article	IF	CITATIONS
19	Roles of leptin in the recovery of muscle and bone by reloading after mechanical unloading in high fat diet-fed obese mice. PLoS ONE, 2019, 14, e0224403.	2.5	6
20	Plasminogen activator inhibitor-1 is involved in interleukin-1β-induced matrix metalloproteinase expression in murine chondrocytes. Modern Rheumatology, 2019, 29, 959-963.	1.8	3
21	Plasminogen activator inhibitorâ€1 deficiency suppresses osteoblastic differentiation of mesenchymal stem cells in mice. Journal of Cellular Physiology, 2019, 234, 9687-9697.	4.1	17
22	Roles of Irisin in the Linkage from Muscle to Bone During Mechanical Unloading in Mice. Calcified Tissue International, 2018, 103, 24-34.	3.1	50
23	Role of Macrophages and Plasminogen Activator Inhibitor-1 in Delayed Bone Repair in Diabetic Female Mice. Endocrinology, 2018, 159, 1875-1885.	2.8	15
24	Role of follistatin in muscle and bone alterations induced by gravity change in mice. Journal of Cellular Physiology, 2018, 233, 1191-1201.	4.1	35
25	Role of plasminogen activator inhibitor-1 in glucocorticoid-induced muscle change in mice. Journal of Bone and Mineral Metabolism, 2018, 36, 148-156.	2.7	18
26	Effects of hypergravity on gene levels in anti-gravity muscle and bone through the vestibular system in mice. Journal of Physiological Sciences, 2018, 68, 609-616.	2.1	6
27	Serpina3n, dominantly expressed in female osteoblasts, suppresses the phenotypes of differentiated osteoblasts in mice. Endocrinology, 2018, 159, 3775-3790.	2.8	15
28	Roles of plasminogen in the alterations in bone marrow hematopoietic stem cells during bone repair. Bone Reports, 2018, 8, 195-203.	0.4	4
29	A synthetic peptide derived from staphylokinase enhances FGF-2-induced skin wound healing in mice. Thrombosis Research, 2017, 157, 7-8.	1.7	2
30	Vitamin D deficiency aggravates diabetes-induced muscle wasting in female mice. Diabetology International, 2017, 8, 52-58.	1.4	11
31	Plasminogen activator inhibitor-1 deficiency enhances subchondral osteopenia after induction of osteoarthritis in mice. BMC Musculoskeletal Disorders, 2017, 18, 392.	1.9	12
32	Tissue fibrinolytic system in bone metabolism. Japanese Journal of Thrombosis and Hemostasis, 2017, 28, 597-602.	0.1	0
33	The vestibular system is critical for the changes in muscle and bone induced by hypergravity in mice. Physiological Reports, 2016, 4, e12979.	1.7	28
34	Novel roles of FKBP5 in muscle alteration induced by gravity change in mice. Biochemical and Biophysical Research Communications, 2016, 479, 602-606.	2.1	20
35	Stromal cell-derived factor-1 mediates changes of bone marrow stem cells during the bone repair process. American Journal of Physiology - Endocrinology and Metabolism, 2016, 310, E15-E23.	3.5	29
36	Role of osteoclasts in heterotopic ossification enhanced by fibrodysplasia ossificans progressiva-related activin-like kinase 2 mutation in mice. Journal of Bone and Mineral Metabolism, 2016, 34, 517-525.	2.7	9

ΝΑΟΥUKI ΚΑWAO

#	Article	IF	CITATIONS
37	The Tissue Fibrinolytic System Contributes to the Induction of Macrophage Function and CCL3 during Bone Repair in Mice. PLoS ONE, 2015, 10, e0123982.	2.5	22
38	Role of Plasminogen Activator Inhibitor-1 in Glucocorticoid-Induced Diabetes and Osteopenia in Mice. Diabetes, 2015, 64, 2194-2206.	0.6	55
39	α2-Antiplasmin is involved in bone loss induced by ovariectomy in mice. Bone, 2015, 79, 233-241.	2.9	15
40	Interactions Between Muscle Tissues and Bone Metabolism. Journal of Cellular Biochemistry, 2015, 116, 687-695.	2.6	176
41	Plasminogen Activator Inhibitor-1 Is Involved in Impaired Bone Repair Associated with Diabetes in Female Mice. PLoS ONE, 2014, 9, e92686.	2.5	46
42	Fibrodysplasia Ossificans Progressiva-related Activated Activin-like Kinase Signaling Enhances Osteoclast Formation during Heterotopic Ossification in Muscle Tissues. Journal of Biological Chemistry, 2014, 289, 16966-16977.	3.4	26
43	Tissue-type plasminogen activator deficiency delays bone repair: roles of osteoblastic proliferation and vascular endothelial growth factor. American Journal of Physiology - Endocrinology and Metabolism, 2014, 307, E278-E288.	3.5	31
44	Plasminogen Activator Inhibitor-1 Deficiency Ameliorates Insulin Resistance and Hyperlipidemia But Not Bone Loss in Obese Female Mice. Endocrinology, 2014, 155, 1708-1717.	2.8	29
45	Enhanced pre-operative thrombolytic status is associated with the incidence of deep venous thrombosis in patients undergoing total knee arthroplasty. Thrombosis Journal, 2014, 12, 11.	2.1	1
46	Influence of diabetic state and vitamin D deficiency on bone repair in female mice. Bone, 2014, 61, 102-108.	2.9	23
47	Plasminogen Activator Inhibitor-1 Is Involved in Streptozotocin-Induced Bone Loss in Female Mice. Diabetes, 2013, 62, 3170-3179.	0.6	46
48	Lack of both α2-antiplasmin and plasminogen activator inhibitor type-1 induces high IgE production. Life Sciences, 2013, 93, 89-95.	4.3	9
49	Enzamin ameliorates adipose tissue inflammation with impaired adipocytokine expression and insulin resistance in db/db mice. Journal of Nutritional Science, 2013, 2, e37.	1.9	4
50	Plasminogen Plays a Crucial Role in Bone Repair. Journal of Bone and Mineral Research, 2013, 28, 1561-1574.	2.8	62
51	Role of matrix metalloproteinase-10 in the BMP-2 inducing osteoblastic differentiation. Endocrine Journal, 2013, 60, 1309-1319.	1.6	20
52	Role of the fibrinolytic system in recovery responses after liver injury. Japanese Journal of Thrombosis and Hemostasis, 2013, 24, 501-506.	0.1	0
53	In Vivo Diagnostic Imaging Using Micro-CT: Sequential and Comparative Evaluation of Rodent Models for Hepatic/Brain Ischemia and Stroke. PLoS ONE, 2012, 7, e32342.	2.5	22
54	Urokinase-type plasminogen activator and plasminogen mediate activation of macrophage phagocytosis during liver repair in vivo. Thrombosis and Haemostasis, 2012, 107, 749-759.	3.4	16

ΝΑΟΥUKI ΚΑWAO

#	Article	IF	CITATIONS
55	Urokinase-type plasminogen activator contributes to heterogeneity of macrophages at the border of damaged site during liver repair in mice. Thrombosis and Haemostasis, 2011, 105, 892-900.	3.4	15
56	Spatiotemporal differences in vascular permeability after ischaemic brain damage. NeuroReport, 2011, 22, 424-427.	1.2	3
57	Profibrinolytic effect of Enzamin, an extract of metabolic products from Bacillus subtilis AK and Lactobacillus. Journal of Thrombosis and Thrombolysis, 2011, 32, 195-200.	2.1	6
58	Systemic transplantation of embryonic stem cells accelerates brain lesion decrease and angiogenesis. NeuroReport, 2010, 21, 575-579.	1.2	26
59	Enhancement of fibrinolytic activity in vascular endothelial cells by heterologous expression of adenine nucleotide translocase-1. Blood Coagulation and Fibrinolysis, 2010, 21, 272-278.	1.0	Ο
60	Initial brain lesion size affects the extent of subsequent pathophysiological responses. Brain Research, 2010, 1322, 109-117.	2.2	19
61	Plasminogen is essential for granulation tissue formation during the recovery process after liver injury in mice. Journal of Thrombosis and Haemostasis, 2010, 8, 1555-1566.	3.8	12
62	Role of plasminogen in macrophage accumulation during liver repair. Thrombosis Research, 2010, 125, e214-e221.	1.7	15
63	Urokinase-type plasminogen activator receptor (uPAR) augments brain damage in a murine model of ischemic stroke. Neuroscience Letters, 2008, 432, 46-49.	2.1	25
64	Binding of plasminogen to hepatocytes isolated from injured mice liver and nonparenchymal cell-dependent proliferation of hepatocytes. Blood Coagulation and Fibrinolysis, 2008, 19, 503-511.	1.0	8
65	Effect of staphylokinase-derived nonadecapeptide on the activation of plasminogen. Thrombosis and Haemostasis, 2007, 97, 795-802.	3.4	6
66	Plasmin decreases the BH3-only protein BimEL via the ERK1/2 signaling pathway in hepatocytes. Biochimica Et Biophysica Acta - Molecular Cell Research, 2007, 1773, 718-727.	4.1	11
67	Colonic hyperalgesia triggered by proteinase-activated receptor-2 in mice: Involvement of endogenous bradykinin. Neuroscience Letters, 2006, 402, 167-172.	2.1	31
68	Antiallodynic effect of etidronate, a bisphosphonate, in rats with adjuvant-induced arthritis: Involvement of ATP-sensitive K+ channels. Neuropharmacology, 2006, 51, 182-190.	4.1	18
69	Suppression of pancreatitisâ€related allodynia/hyperalgesia by proteinaseâ€activated receptorâ€2 in mice. British Journal of Pharmacology, 2006, 148, 54-60.	5.4	47
70	Physiology and Pathophysiology of Proteinase-Activated Receptors (PARs): PARs in the Respiratory System: Cellular Signaling and Physiological/Pathological Roles. Journal of Pharmacological Sciences, 2005, 97, 20-24.	2.5	60
71	Signal Transduction for Proteinase-Activated Receptor-2-Triggered Prostaglandin E2 Formation in Human Lung Epithelial Cells. Journal of Pharmacology and Experimental Therapeutics, 2005, 315, 576-589.	2.5	49
72	Proteinase-Activated Receptor-2-Mediated Relaxation in Mouse Tracheal and Bronchial Smooth Muscle: Signal Transduction Mechanisms and Distinct Agonist Sensitivity. Journal of Pharmacology and Experimental Therapeutics, 2004, 311, 402-410.	2.5	37

ΝΑΟΥUKI ΚΑWAO

#	Article	IF	CITATIONS
73	Distinct roles for protease-activated receptors 1 and 2 in vasomotor modulation in rat superior mesenteric artery. Cardiovascular Research, 2004, 61, 683-692.	3.8	25
74	A protective role of protease-activated receptor 1 in rat gastric mucosa. Gastroenterology, 2004, 126, 208-219.	1.3	45
75	The potent inducible nitric oxide synthase inhibitor ONO-1714 inhibits neuronal NOS and exerts antinociception in rats. Neuroscience Letters, 2004, 365, 111-115.	2.1	19
76	Receptor-activating peptides for PAR-1 and PAR-2 relax rat gastric artery via multiple mechanisms. Life Sciences, 2004, 75, 2689-2702.	4.3	16
77	Activation of trigeminal nociceptive neurons by parotid PAR-2 activation in rats. NeuroReport, 2004, 15, 1617-1621.	1.2	17
78	Modulation of Capsaicin-Evoked Visceral Pain and Referred Hyperalgesia by Protease-Activated Receptors 1 and 2. Journal of Pharmacological Sciences, 2004, 94, 277-285.	2.5	58
79	Effect of a potent iNOS inhibitor (ONO-1714) on acetaminophen-induced hepatotoxicity in the rat. Life Sciences, 2003, 74, 793-802.	4.3	35
80	The PAR-1-activating peptide facilitates pepsinogen secretion in rats. Peptides, 2003, 24, 1449-1451.	2.4	13
81	Capsazepine Inhibits Thermal Hyperalgesia but Not Nociception Triggered by Protease-Activated Receptor-2 in Rats. The Japanese Journal of Pharmacology, 2002, 89, 184-187.	1.2	28
82	Specific expression of spinal Fos after PAR-2 stimulation in mast cell-depleted rats. NeuroReport, 2002, 13, 511-514.	1.2	24
83	Protease-activated receptor-2 (PAR-2) in the pancreas and parotid gland: Immunolocalization and involvement of nitric oxide in the evoked amylase secretion. Life Sciences, 2002, 71, 2435-2446.	4.3	64
84	The PAR-1-activating peptide attenuates carrageenan-induced hyperalgesia in rats. Peptides, 2002, 23, 1181-1183.	2.4	36
85	Role of N-methyl-d-aspartate receptors and the nitric oxide pathway in nociception/hyperalgesia elicited by protease-activated receptor-2 activation in mice and rats. Neuroscience Letters, 2002, 329, 349-353.	2.1	25
86	Proteaseâ€activated receptorâ€2 (PARâ€2) in the rat gastric mucosa: immunolocalization and facilitation of pepsin/pepsinogen secretion. British Journal of Pharmacology, 2002, 135, 1292-1296.	5.4	51
87	Factor Xa-Evoked Relaxation in Rat Aorta: Involvement of PAR-2. Biochemical and Biophysical Research Communications, 2001, 282, 432-435.	2.1	48
88	Ex Vivo Evidence That the Phosphodiesterase Inhibitor IBMX Attenuates the Up-Regulation of PAR-2 in the Endotoxemic Rat Aorta. Thrombosis Research, 2001, 101, 513-515.	1.7	7
89	Peripheral PAR-2 triggers thermal hyperalgesia and nociceptive responses in rats. NeuroReport, 2001, 12, 715-719.	1.2	94
90	Lipopolysaccharide-induced subsensitivity of protease-activated receptor-2 in the mouse salivary glands in vivo. Naunyn-Schmiedeberg's Archives of Pharmacology, 2001, 364, 281-284.	3.0	14

#	Article	IF	CITATIONS
91	In vivo evidence that protease-activated receptors 1 and 2 modulate gastrointestinal transit in the mouse. British Journal of Pharmacology, 2001, 133, 1213-1218.	5.4	71
92	Secondary somatosensory cortex stimulation facilitates the antinociceptive effect of the NO synthase inhibitor through suppression of spinal nociceptive neurons in the rat. Brain Research, 2001, 903, 110-116.	2.2	20
93	Somatosensory cortex stimulation-evoked analgesia in rats: Potentiation by no synthase inhibition. Life Sciences, 2000, 66, PL271-PL276.	4.3	21