Eckardt Treuter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4381837/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Plaque Evaluation by Ultrasound and Transcriptomics Reveals BCLAF1 as a Regulator of Smooth Muscle Cell Lipid Transdifferentiation in Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2022, 42, 659-676.	2.4	12
2	An optimized 4C-seq protocol based on cistrome and epigenome data in the mouse RAW264.7 macrophage cell line. STAR Protocols, 2022, 3, 101338.	1.2	1
3	The corepressors GPS2 and SMRT control enhancer and silencer remodeling via eRNA transcription during inflammatory activation of macrophages. Molecular Cell, 2021, 81, 953-968.e9.	9.7	27
4	Transcriptional and epigenetic control of adipocyte remodeling during obesity. Obesity, 2021, 29, 2013-2025.	3.0	6
5	Adipocyte Reprogramming by the Transcriptional Coregulator GPS2 Impacts Beta Cell Insulin Secretion. Cell Reports, 2020, 32, 108141.	6.4	9
6	Loss of G protein pathway suppressor 2 in human adipocytes triggers lipid remodeling by upregulating ATP binding cassette subfamily G member 1. Molecular Metabolism, 2020, 42, 101066.	6.5	7
7	The Nuclear Receptor—Co-repressor Complex in Control of Liver Metabolism and Disease. Frontiers in Endocrinology, 2019, 10, 411.	3.5	30
8	Impaired LXRα Phosphorylation Attenuates Progression of Fatty Liver Disease. Cell Reports, 2019, 26, 984-995.e6.	6.4	46
9	Preparation of Frozen Liver Tissues for Integrated Omics Analysis. Methods in Molecular Biology, 2019, 1951, 167-178.	0.9	2
10	Hepatocyte-specific loss of GPS2 in mice reduces non-alcoholic steatohepatitis via activation of PPARα. Nature Communications, 2019, 10, 1684.	12.8	48
11	G protein pathway suppressor 2 (GPS2) links inflammation and cholesterol efflux by controlling lipopolysaccharideâ€induced ATPâ€binding cassette transporter A1 expression in macrophages. FASEB Journal, 2019, 33, 1631-1643.	0.5	12
12	GPS2 Deficiency Triggers Maladaptive White Adipose Tissue Expansion in Obesity via HIF1A Activation. Cell Reports, 2018, 24, 2957-2971.e6.	6.4	48
13	Transcriptional repression in macrophages—basic mechanisms and alterations in metabolic inflammatory diseases. FEBS Letters, 2017, 591, 2959-2977.	2.8	28
14	Loss of the co-repressor GPS2 sensitizes macrophage activation upon metabolic stress induced by obesity and type 2 diabetes. Nature Medicine, 2016, 22, 780-791.	30.7	91
15	Nuclear Receptor Coregulators in Metabolism and Disease. Handbook of Experimental Pharmacology, 2015, 233, 95-135.	1.8	24
16	Genomic and epigenomic regulation of adipose tissue inflammation in obesity. Trends in Endocrinology and Metabolism, 2013, 24, 625-634.	7.1	40
17	SMRT-GPS2 corepressor pathway dysregulation coincides with obesity-linked adipocyte inflammation. Journal of Clinical Investigation, 2013, 123, 362-379.	8.2	83
18	Liver X receptor biology and pharmacology: new pathways, challenges and opportunities. Trends in Pharmacological Sciences, 2012, 33, 394-404.	8.7	264

ECKARDT TREUTER

#	Article	IF	CITATIONS
19	Ligand-independent actions of the orphan receptors/corepressors DAX-1 and SHP in metabolism, reproduction and disease. Journal of Steroid Biochemistry and Molecular Biology, 2012, 130, 169-179.	2.5	29
20	Genome-wide landscape of liver X receptor chromatin binding and gene regulation in human macrophages. BMC Genomics, 2012, 13, 50.	2.8	69
21	Knockdown of SF-1 and RNF31 Affects Components of Steroidogenesis, TGFβ, and Wnt/β-catenin Signaling in Adrenocortical Carcinoma Cells. PLoS ONE, 2012, 7, e32080.	2.5	24
22	Reporter Zebrafish: Endocrine Disruption Meets Estrogen Signaling. Endocrinology, 2011, 152, 2542-2545.	2.8	5
23	Transcriptional control of metabolic and inflammatory pathways by nuclear receptor SUMOylation. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2011, 1812, 909-918.	3.8	83
24	Metabolic nuclear receptor signaling and the inflammatory acute phase response. Trends in Endocrinology and Metabolism, 2011, 22, 333-343.	7.1	80
25	New wrestling rules of anti-inflammatory transrepression by oxysterol receptor LXR revealed. Cell Research, 2011, 21, 711-714.	12.0	10
26	GPS2-dependent corepressor/SUMO pathways govern anti-inflammatory actions of LRH-1 and LXRβ in the hepatic acute phase response. Genes and Development, 2010, 24, 381-395.	5.9	162
27	Functional interaction of DYX1C1 with estrogen receptors suggests involvement of hormonal pathways in dyslexia. Human Molecular Genetics, 2009, 18, 2802-2812.	2.9	56
28	E3 Ubiquitin Ligase RNF31 Cooperates with DAX-1 in Transcriptional Repression of Steroidogenesis. Molecular and Cellular Biology, 2009, 29, 2230-2242.	2.3	43
29	GPS2 Is Required for Cholesterol Efflux by Triggering Histone Demethylation, LXR Recruitment, and Coregulator Assembly at the ABCG1 Locus. Molecular Cell, 2009, 34, 510-518.	9.7	107
30	Molecular Dynamics Simulations of Human LRH-1: The Impact of Ligand Binding in a Constitutively Active Nuclear Receptor. Biochemistry, 2008, 47, 5205-5215.	2.5	12
31	Involvement of corepressor complex subunit GPS2 in transcriptional pathways governing human bile acid biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 15665-15670.	7.1	76
32	Structural Insights into Corepressor Recognition by Antagonist-bound Estrogen Receptors. Journal of Biological Chemistry, 2007, 282, 10449-10455.	3.4	75
33	Coordinated Recruitment of Histone Methyltransferase G9a and Other Chromatin-Modifying Enzymes in SHP-Mediated Regulation of Hepatic Bile Acid Metabolism. Molecular and Cellular Biology, 2007, 27, 1407-1424.	2.3	90
34	Co-planar 3,3′,4,4′,5-pentachlorinated biphenyl and non-co-planar 2,2′,4,6,6′-pentachlorinated biphe differentially induce recruitment of oestrogen receptor α to aryl hydrocarbon receptor target genes. Biochemical Journal, 2007, 406, 343-353.	nyl 3.7	44
35	Wrestling Rules in Transrepression: As Easy as SUMO-1, -2, -3?. Molecular Cell, 2007, 25, 178-180.	9.7	17
36	Estrogen Receptors: How Do They Signal and What Are Their Targets. Physiological Reviews, 2007, 87, 905-931.	28.8	1,489

#	Article	IF	CITATIONS
37	Subtle Side-Chain Modifications of the Hop Phytoestrogen 8-Prenylnaringenin Result in Distinct Agonist/Antagonist Activity Profiles for Estrogen Receptors \hat{I}_{\pm} and \hat{I}_{-}^2 . Journal of Medicinal Chemistry, 2006, 49, 7357-7365.	6.4	76
38	Delineation of a unique protein-protein interaction site on the surface of the estrogen receptor. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 3593-3598.	7.1	59
39	EID3 is a novel EID family member and an inhibitor of CBP-dependent co-activation. Nucleic Acids Research, 2005, 33, 3561-3569.	14.5	53
40	Transcriptional corepression by SHP: molecular mechanisms and physiological consequences. Trends in Endocrinology and Metabolism, 2005, 16, 478-488.	7.1	132
41	Deoxyribonucleic Acid Response Element-Dependent Regulation of Transcription by Orphan Nuclear Receptor Estrogen Receptor-Related Receptor γ. Molecular Endocrinology, 2004, 18, 312-325.	3.7	42
42	An Alternative Splicing Variant of the Selenoprotein Thioredoxin Reductase Is a Modulator of Estrogen Signaling. Journal of Biological Chemistry, 2004, 279, 38721-38729.	3.4	51
43	Tomato Heat Stress Transcription Factor HsfB1 Represents a Novel Type of General Transcription Coactivator with a Histone-Like Motif Interacting with the Plant CREB Binding Protein Ortholog HAC1[W]. Plant Cell, 2004, 16, 1521-1535.	6.6	196
44	Identification of Tamoxifen-Induced Coregulator Interaction Surfaces within the Ligand-Binding Domain of Estrogen Receptors. Molecular and Cellular Biology, 2004, 24, 3445-3459.	2.3	50
45	Functional conservation of interactions between a homeodomain cofactor and a mammalian FTZâ€F1 homologue. EMBO Reports, 2004, 5, 613-619.	4.5	59
46	Expression and Functional Analysis of Liver Receptor Homologue 1 as a Potential Steroidogenic Factor in Rat Ovary1. Biology of Reproduction, 2003, 69, 508-517.	2.7	73
47	Regulation of Subnuclear Localization Is Associated with a Mechanism for Nuclear Receptor Corepression by RIP140. Molecular and Cellular Biology, 2003, 23, 4187-4198.	2.3	48
48	Inactivation of the Nuclear Receptor Coactivator RAP250 in Mice Results in Placental Vascular Dysfunction. Molecular and Cellular Biology, 2003, 23, 1260-1268.	2.3	89
49	Activation Functions 1 and 2 of Nuclear Receptors: Molecular Strategies for Transcriptional Activation. Molecular Endocrinology, 2003, 17, 1901-1909.	3.7	240
50	Glucocorticoid Signaling Is Perturbed by the Atypical Orphan Receptor and Corepressor SHP. Journal of Biological Chemistry, 2002, 277, 49761-49766.	3.4	116
51	Interaction of Transcriptional Intermediary Factor 2 Nuclear Receptor Box Peptides with the Coactivator Binding Site of Estrogen Receptor α. Journal of Biological Chemistry, 2002, 277, 21862-21868.	3.4	152
52	Inhibition of Androgen Receptor (AR) Function by the Reproductive Orphan Nuclear Receptor DAX-1. Molecular Endocrinology, 2002, 16, 515-528.	3.7	124
53	Comparative distribution of the mammalian mediator subunit thyroid hormone receptor-associated protein (TRAP220) mRNA in developing and adult rodent brain. European Journal of Neuroscience, 2002, 16, 671-683.	2.6	18
54	A transcriptional inhibitor targeted by the atypical orphan nuclear receptor SHP. EMBO Reports, 2002, 3. 478-484.	4.5	62

ECKARDT TREUTER

#	Article	IF	CITATIONS
55	Mechanisms of Estrogen Action. Physiological Reviews, 2001, 81, 1535-1565.	28.8	1,671
56	Differential Recruitment of the Mammalian Mediator Subunit TRAP220 by Estrogen Receptors ERα and ERβ. Journal of Biological Chemistry, 2001, 276, 23397-23404.	3.4	113
57	DAX-1 Functions as an LXXLL-containing Corepressor for Activated Estrogen Receptors. Journal of Biological Chemistry, 2000, 275, 39855-39859.	3.4	151
58	Cloning and Characterization of RAP250, a Novel Nuclear Receptor Coactivator. Journal of Biological Chemistry, 2000, 275, 5308-5317.	3.4	127
59	The Orphan Nuclear Receptor SHP Utilizes Conserved LXXLL-Related Motifs for Interactions with Ligand-Activated Estrogen Receptors. Molecular and Cellular Biology, 2000, 20, 1124-1133.	2.3	143
60	The Role of AHA Motifs in the Activator Function of Tomato Heat Stress Transcription Factors HsfA1 and HsfA2. Plant Cell, 2000, 12, 265-278.	6.6	146
61	Receptor Interacting Protein RIP140 Inhibits Both Positive and Negative Gene Regulation by Glucocorticoids. Journal of Biological Chemistry, 1999, 274, 18121-18127.	3.4	87
62	Competition between Thyroid Hormone Receptor-associated Protein (TRAP) 220 and Transcriptional Intermediary Factor (TIF) 2 for Binding to Nuclear Receptors. Journal of Biological Chemistry, 1999, 274, 6667-6677.	3.4	72
63	The nuclear-receptor interacting protein (RIP) 140 binds to the human glucocorticoid receptor and modulates hormone-dependent transactivation. Journal of Steroid Biochemistry and Molecular Biology, 1999, 71, 93-102.	2.5	25
64	Regulation of Peroxisome Proliferator-Activated Receptors. Vitamins and Hormones, 1998, 54, 121-166.	1.7	57
65	A Regulatory Role for RIP140 in Nuclear Receptor Activation. Molecular Endocrinology, 1998, 12, 864-881.	3.7	202
66	Mechanistic Principles in NR Box-Dependent Interaction between Nuclear Hormone Receptors and the Coactivator TIF2. Molecular and Cellular Biology, 1998, 18, 6001-6013.	2.3	100
67	Intracellular distribution and identification of the nuclear localization signals of two plant heat-stress transcription factors. Planta, 1997, 202, 117-125.	3.2	93
68	Heat Stress Promoters and Transcription Factors. Results and Problems in Cell Differentiation, 1994, 20, 125-162.	0.7	15