## Wojciech Andrzej Pisarski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4381819/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Structure and properties of rare earth-doped lead borate glasses. Materials Science and Engineering<br>B: Solid-State Materials for Advanced Technology, 2005, 122, 94-99.                                                  | 1.7 | 120       |
| 2  | Laser spectroscopy of Nd3+ and Dy3+ ions in lead borate glasses. Optics and Laser Technology, 2010, 42, 805-809.                                                                                                            | 2.2 | 95        |
| 3  | Structure and spectroscopy of rare earth – Doped lead phosphate glasses. Journal of Alloys and<br>Compounds, 2014, 587, 90-98.                                                                                              | 2.8 | 78        |
| 4  | Er-Doped Lead Borate Glasses and Transparent Glass Ceramics for Near-Infrared Luminescence and Up-Conversion Applications. Journal of Physical Chemistry B, 2007, 111, 2427-2430.                                           | 1.2 | 66        |
| 5  | Visible and infrared spectroscopy of Pr3+and Tm3+ions in lead borate glasses. Journal of Physics<br>Condensed Matter, 2004, 16, 6171-6184.                                                                                  | 0.7 | 56        |
| 6  | Transition metal (Cr3+) and rare earth (Eu3+, Dy3+) ions used as a spectroscopic probe in compositional-dependent lead borate glasses. Journal of Alloys and Compounds, 2009, 484, 45-49.                                   | 2.8 | 56        |
| 7  | Compositional-dependent lead borate based glasses doped with Eu3+ ions: Synthesis and spectroscopic properties. Journal of Physics and Chemistry of Solids, 2006, 67, 2452-2457.                                            | 1.9 | 55        |
| 8  | Highly Phosphorescent Cyclometalated Iridium(III) Complexes for Optoelectronic Applications: Fine<br>Tuning of the Emission Wavelength through Ancillary Ligands. Journal of Physical Chemistry C, 2016,<br>120, 7284-7294. | 1.5 | 52        |
| 9  | Tri-color upconversion luminescence of Rare earth doped BaTiO_3 nanocrystals and lowered color separation. Optics Express, 2009, 17, 9089.                                                                                  | 1.7 | 49        |
| 10 | Structural and luminescent properties of germanate glasses and double-clad optical fiber co-doped with Yb3+/Ho3+. Journal of Alloys and Compounds, 2017, 727, 1221-1226.                                                    | 2.8 | 47        |
| 11 | Investigation of Eu3+ sites in SrLaGa3O7, SrLaGaO4 and SrLaAlO4 crystals. Journal of Physics and Chemistry of Solids, 1997, 58, 639-645.                                                                                    | 1.9 | 46        |
| 12 | Er3+/Yb3+ co-doped lead germanate glasses for up-conversion luminescence temperature sensors.<br>Sensors and Actuators A: Physical, 2016, 252, 54-58.                                                                       | 2.0 | 46        |
| 13 | Tm <sup>3+</sup> /Ho <sup>3+</sup> co-doped germanate glass and double-clad optical fiber for<br>broadband emission and lasing above 2 Âμm. Optical Materials Express, 2019, 9, 1450.                                       | 1.6 | 46        |
| 14 | Spectroscopic properties of Yb3+ and Er3+ ions in heavy metal glasses. Journal of Alloys and Compounds, 2011, 509, 8088-8092.                                                                                               | 2.8 | 45        |
| 15 | Erbium-doped oxide and oxyhalide lead borate glasses for near-infrared broadband optical amplifiers.<br>Chemical Physics Letters, 2009, 472, 217-219.                                                                       | 1.2 | 44        |
| 16 | Influence of BaF_2 and activator concentration on broadband near-infrared luminescence of Pr^3+<br>ions in gallo-germanate glasses. Optics Express, 2016, 24, 2427.                                                         | 1.7 | 44        |
| 17 | Investigation of upconversion luminescence in antimony–germanate double-clad two cores optical fiber co-doped with Yb /Tm3+ and Yb3+/Ho3+ ions. Journal of Luminescence, 2016, 170, 795-800.                                | 1.5 | 43        |
| 18 | Up-converted luminescence in Yb–Tm co-doped lead fluoroborate glasses. Journal of Alloys and<br>Compounds, 2008, 451, 226-228.                                                                                              | 2.8 | 42        |

| #  | Article                                                                                                                                                                | IF              | CITATIONS         |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------------|
| 19 | Unusual luminescence behavior of Dy3+-doped lead borate glass after heat treatment. Chemical<br>Physics Letters, 2010, 489, 198-201.                                   | 1.2             | 41                |
| 20 | Effect of erbium concentration on physical properties of fluoroindate glass. Chemical Physics Letters, 2003, 380, 604-608.                                             | 1.2             | 40                |
| 21 | Optical spectroscopy of Dy3+ ions in heavy metal lead-based glasses and glass–ceramics. Journal of<br>Molecular Structure, 2011, 993, 160-166.                         | 1.8             | 39                |
| 22 | Absorption and luminescence properties of terbium ions in heavy metal glasses. Journal of Alloys and Compounds, 2013, 578, 512-516.                                    | 2.8             | 39                |
| 23 | Energy transfer from Dy3+ to Tb3+ in lead borate glass. Materials Letters, 2014, 129, 146-148.                                                                         | 1.3             | 39                |
| 24 | Compositional-dependent europium-doped lead phosphate glasses and their spectroscopic properties.<br>Optical Materials, 2015, 40, 91-96.                               | 1.7             | 39                |
| 25 | Energy transfer from Tb3+ to Eu3+ in lead borate glass. Journal of Non-Crystalline Solids, 2014, 388, 1-5.                                                             | 1.5             | 38                |
| 26 | Sensitive optical temperature sensor based on up-conversion luminescence spectra of Er3+ ions in PbO–Ga2O3–XO2 (X=Ge, Si) glasses. Optical Materials, 2016, 59, 87-90. | 1.7             | 38                |
| 27 | Spectroscopy and energy transfer in Tb 3+ /Sm 3+ co-doped lead borate glasses. Journal of Luminescence, 2018, 195, 87-95.                                              | 1.5             | 37                |
| 28 | Anisotropy of optical properties of SrLaAlO4 and SrLaAlO4:Nd. Journal of Alloys and Compounds, 1995, 217, 263-267.                                                     | 2.8             | 36                |
| 29 | Role of PbO substitution by PbF2 on structural behavior and luminescence of rare earth-doped lead borate glass. Journal of Alloys and Compounds, 2008, 451, 220-222.   | 2.8             | 36                |
| 30 | Optical transitions of Eu^3+ and Dy^3+ ions in lead phosphate glasses. Optics Letters, 2011, 36, 990.                                                                  | 1.7             | 36                |
| 31 | Nd-doped oxyfluoroborate glasses and glass-ceramics for NIR laser applications. Journal of Alloys and Compounds, 2008, 451, 223-225.                                   | 2.8             | 35                |
| 32 | Structural and optical aspects for Eu3+ and Dy3+ ions in heavy metal glasses based on<br>PbO–Ga2O3–XO2 (X=Te, Ge, Si). Optical Materials, 2013, 35, 1051-1056.         | 1.7             | 32                |
| 33 | Excitation and luminescence of rare earth-doped lead phosphate glasses. Applied Physics B: Lasers and Optics, 2014, 116, 837-845.                                      | 1.1             | 32                |
| 34 | Electrical and optical properties of glasses and glass-ceramics. Journal of Non-Crystalline Solids, 2018, 498, 352-363.                                                | 1.5             | 32                |
| 35 | Luminescence investigations of rare earth doped lead-free borate glasses modified by MO (MÂ=ÂCa, Sr,) Tj ETQq1                                                         | 1.0.7843<br>2.0 | 14 rgBT /Ov<br>30 |
| 36 | Effect of GeO2 content on structural and spectroscopic properties of antimony glasses doped with Sm3+ ions. Journal of Molecular Structure, 2016, 1126, 207-212.       | 1.8             | 30                |

| #  | Article                                                                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Glass structure and NIR emission of Er3+ at 1.5 μm in oxyfluoride BaF2–Al2O3–B2O3 glasses. Optical<br>Materials, 2015, 50, 238-243.                                                                                                                                                                        | 1.7 | 29        |
| 38 | Synthesis, Electrochemistry, Crystal Structures, and Optical Properties of Quinoline Derivatives with<br>a 2,2′â€Bithiophene Motif. European Journal of Organic Chemistry, 2014, 2014, 5256-5264.                                                                                                          | 1.2 | 27        |
| 39 | Influence of temperature on up-conversion luminescence in Er3+/Yb3+ doubly doped lead-free fluorogermanate glasses for optical sensing. Sensors and Actuators B: Chemical, 2017, 253, 85-91.                                                                                                               | 4.0 | 27        |
| 40 | Structural and spectroscopic properties of lead phosphate glasses doubly doped with Tb 3+ and Eu 3+ ions. Journal of Molecular Structure, 2018, 1163, 418-427.                                                                                                                                             | 1.8 | 27        |
| 41 | Graphene oxide covalently modified with 2,2′-iminodiacetic acid for preconcentration of Cr(III), Cu(II),<br>Zn(II) and Pb(II) from water samples prior to their determination by energy dispersive X-ray<br>fluorescence spectrometry. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2018, 147, 79-86. | 1.5 | 27        |
| 42 | Passive mode locking of a Nd3+:SrLaGa3O7 laser. Applied Physics Letters, 1995, 67, 2442-2444.                                                                                                                                                                                                              | 1.5 | 26        |
| 43 | Long-lived emission from Eu3+:PbF2 nanocrystals distributed into sol–gel silica glass. Journal of<br>Sol-Gel Science and Technology, 2013, 68, 278-283.                                                                                                                                                    | 1.1 | 26        |
| 44 | Excitation and luminescence of Dy3+ ions in PbO-P2O5-Ga2O3 glass system. Journal of Rare Earths, 2014, 32, 213-216.                                                                                                                                                                                        | 2.5 | 26        |
| 45 | Influence of silicate sol–gel host matrices and catalyst agents on the luminescent properties of<br>Eu <sup>3+</sup> /Gd <sup>3+</sup> under different excitation wavelengths. RSC Advances, 2015, 5,<br>98773-98782.                                                                                      | 1.7 | 26        |
| 46 | Spectroscopic study of Eu3+ ions in heavy metal fluoride and oxide glasses. Physica Status Solidi (B):<br>Basic Research, 2005, 242, 2910-2918.                                                                                                                                                            | 0.7 | 25        |
| 47 | Up-conversion luminescence of Tb^3+ ions in germanate glasses under diode-laser excitation of Yb^3+.<br>Optical Materials Express, 2014, 4, 1050.                                                                                                                                                          | 1.6 | 25        |
| 48 | 2†μm emission in gallo-germanate glasses and glass fibers co-doped with Yb3+/Ho3+ and Yb3+/Tm3+/Ho3+.<br>Journal of Luminescence, 2019, 211, 341-346.                                                                                                                                                      | 1.5 | 25        |
| 49 | Terbium-doped heavy metal glasses for green luminescence. Journal of Rare Earths, 2011, 29, 1198-1200.                                                                                                                                                                                                     | 2.5 | 24        |
| 50 | Towards lead-free oxyfluoride germanate glasses singly doped with Er 3+ for long-lived near-infrared<br>luminescence. Materials Chemistry and Physics, 2014, 148, 485-489.                                                                                                                                 | 2.0 | 23        |
| 51 | Spectral analysis of Pr3+ doped germanate glasses modified by BaO and BaF2. Journal of Luminescence, 2016, 171, 138-142.                                                                                                                                                                                   | 1.5 | 23        |
| 52 | Terbium-terbium interactions in lead phosphate glasses. Journal of Applied Physics, 2013, 113, 143504.                                                                                                                                                                                                     | 1.1 | 22        |
| 53 | Ultraviolet-to-visible downconversion luminescence in solgel oxyfluoride glass ceramics containing Eu^3+:GdF_3 nanocrystals. Optics Letters, 2014, 39, 3181.                                                                                                                                               | 1.7 | 22        |
| 54 | Structural and optical investigations of rare earth doped lead-free germanate glasses modified by MO and MF2 (M = Ca, Sr, Ba). Journal of Non-Crystalline Solids, 2016, 431, 145-149.                                                                                                                      | 1.5 | 22        |

| #  | Article                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Local structure and luminescent properties of lead phosphate glasses containing rare earth ions.<br>Journal of Rare Earths, 2011, 29, 1157-1160.                                                  | 2.5 | 21        |
| 56 | Influence of PbF2 concentration on thermal, structural and spectroscopic properties of Eu3+-doped<br>lead phosphate glasses. Journal of Molecular Structure, 2014, 1075, 605-608.                 | 1.8 | 21        |
| 57 | Lead borate glasses triply doped with Dy3+/Tb3+/Eu3+ ions for white emission. Optical Materials, 2018, 82, 110-115.                                                                               | 1.7 | 21        |
| 58 | Influence of MO/MF2 modifiers (MÂ=ÂCa, Sr, Ba) on spectroscopic properties of Eu3+ ions in germanate<br>and borate glasses. Optical Materials, 2016, 61, 59-63.                                   | 1.7 | 20        |
| 59 | Lead fluoride β-PbF 2 nanocrystals containing Eu 3+ and Tb 3+ ions embedded in sol-gel materials:<br>Thermal, structural and optical investigations. Ceramics International, 2017, 43, 8424-8432. | 2.3 | 20        |
| 60 | Spectroscopic properties of antimony modified germanate glass doped with Eu3+ ions. Ceramics International, 2019, 45, 24811-24817.                                                                | 2.3 | 20        |
| 61 | Structure, luminescence and energy transfer of fluoroindate glasses co-doped with Er3+/Ho3+.<br>Ceramics International, 2020, 46, 26403-26409.                                                    | 2.3 | 20        |
| 62 | Near-IR and mid-IR luminescence and energy transfer in fluoroindate glasses co-doped with<br>Er <sup>3+</sup> /Tm <sup>3+</sup> . Optical Materials Express, 2019, 9, 4772.                       | 1.6 | 20        |
| 63 | Optical properties of silica sol-gel materials singly- and doubly-doped with Eu3+and Gd3+ ions. Journal of Rare Earths, 2016, 34, 786-795.                                                        | 2.5 | 19        |
| 64 | Influence of P2O5 concentration on structural, thermal and optical behavior of Pr-activated fluoroindate glass. Physica B: Condensed Matter, 2007, 388, 331-336.                                  | 1.3 | 18        |
| 65 | Energy transfer from Gd3+ to Eu3+ in silica xerogels. Journal of Luminescence, 2014, 154, 290-293.                                                                                                | 1.5 | 18        |
| 66 | Enhancement and quenching photoluminescence effects for rare earth – Doped lead bismuth gallate glasses. Journal of Alloys and Compounds, 2015, 651, 565-570.                                     | 2.8 | 18        |
| 67 | Effect of BaF <sub>2</sub> Content on Luminescence of Rareâ€Earth Ions in Borate and Germanate<br>Glasses. Journal of the American Ceramic Society, 2016, 99, 2009-2016.                          | 1.9 | 18        |
| 68 | Photoluminescence investigation of sol-gel glass-ceramic materials containing SrF2:Eu3+<br>nanocrystals. Journal of Alloys and Compounds, 2019, 810, 151935.                                      | 2.8 | 18        |
| 69 | Effect of acceptor ions concentration in lead phosphate glasses co-doped with Tb3+–Ln3+ (LnÂ=ÂEu, Sm)<br>for LED applications. Journal of Rare Earths, 2019, 37, 1145-1151.                       | 2.5 | 18        |
| 70 | Optical spectroscopy of a chromium doped (CH3)2NH2Al(SO4)2·6H2O single crystal in the ferroelectric phase. Chemical Physics Letters, 1997, 264, 323-326.                                          | 1.2 | 17        |
| 71 | Luminescence quenching of Dy3+ ions in lead bismuthate glasses. Chemical Physics Letters, 2012, 531, 114-118.                                                                                     | 1.2 | 17        |
| 72 | Influence of PbF2 concentration on spectroscopic properties of Eu3+ and Dy3+ ions in lead borate glasses. Journal of Non-Crystalline Solids, 2013, 377, 114-118.                                  | 1.5 | 17        |

| #  | Article                                                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | NIR to visible upconversion in double – clad optical fiber co-doped with Yb^3+/Ho^3+. Optical<br>Materials Express, 2015, 5, 1505.                                                                                                                             | 1.6  | 17        |
| 74 | Thermal analysis and near-infrared luminescence of Er3+-doped lead phosphate glasses modified by PbF2. Journal of Luminescence, 2015, 160, 57-63.                                                                                                              | 1.5  | 17        |
| 75 | White light emission through energy transfer processes in barium gallo-germanate glasses co-doped<br>with Dy3+-Ln3+ (Ln =Ce, Tm). Optical Materials, 2019, 87, 63-69.                                                                                          | 1.7  | 17        |
| 76 | Energy dispersive X-ray fluorescence spectrometric determination of copper, zinc, lead and chromium species after preconcentration on graphene oxide chemically modified with mercapto-groups. Journal of Analytical Atomic Spectrometry, 2019, 34, 1416-1425. | 1.6  | 17        |
| 77 | Laser spectroscopy of rare earth ions in lead borate glasses and transparent glass-ceramics. Laser<br>Physics, 2010, 20, 649-655.                                                                                                                              | 0.6  | 16        |
| 78 | Luminescence of Eu3+/Gd3+ co-doped silicate sol–gel powders. Journal of Luminescence, 2015, 166, 356-360.                                                                                                                                                      | 1.5  | 16        |
| 79 | Rare earths in lead-free oxyfluoride germanate glasses. Spectrochimica Acta - Part A: Molecular and<br>Biomolecular Spectroscopy, 2015, 134, 587-591.                                                                                                          | 2.0  | 16        |
| 80 | Rare earth-doped barium gallo-germanate glasses and their near-infrared luminescence properties.<br>Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 201, 362-366.                                                                 | 2.0  | 16        |
| 81 | Structure and luminescent properties of oxyfluoride glass-ceramics with YF3:Eu3+ nanocrystals derived by sol-gel method. Journal of the European Ceramic Society, 2019, 39, 5010-5017.                                                                         | 2.8  | 16        |
| 82 | Influence of the rare earth ions concentration on luminescence properties of barium gallo-germanate glasses for white lighting. Journal of Luminescence, 2019, 211, 375-381.                                                                                   | 1.5  | 16        |
| 83 | Glass preparation and temperature-induced crystallization in multicomponent<br>B2O3–PbX2–PbO–Al2O3–WO3–Dy2O3 (X = F, Cl, Br) system. Journal of Non-Crystalline Solids, 2011,<br>1228-1231.                                                                    | 357, | 15        |
| 84 | Spectroscopy and energy transfer in lead borate glasses doubly doped with Dy3+–Tb3+ and Tb3+–Eu3+<br>ions. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 129, 649-653.                                                          | 2.0  | 15        |
| 85 | Luminescent Studies on Germanate Glasses Doped with Europium Ions for Photonic Applications.<br>Materials, 2020, 13, 2817.                                                                                                                                     | 1.3  | 15        |
| 86 | Optical spectroscopy of chromium doped (CH3)2NH2X(SO4)2·6H2O (X=Al, Ga) single crystals. Journal of Molecular Structure, 1998, 450, 219-222.                                                                                                                   | 1.8  | 14        |
| 87 | Upconversion emission in antimony–germanate double-clad optical fiber co-doped with Yb3+/Tm3+<br>ions. Optical Materials, 2015, 41, 108-111.                                                                                                                   | 1.7  | 14        |
| 88 | Influence of activator concentration on green-emitting Tb 3+ -doped materials derived by sol-gel method. Journal of Luminescence, 2017, 188, 400-408.                                                                                                          | 1.5  | 14        |
| 89 | Up-conversion luminescence of Er 3+ ions in lead-free germanate glasses under 800Ânm and 980Ânm cw<br>diode laser excitation. Optical Materials, 2017, 74, 105-108.                                                                                            | 1.7  | 14        |
| 90 | Structural and luminescence properties of silica powders and transparent glassâ€ceramics containing<br>LaF <sub>3</sub> :Eu <sup>3+</sup> nanocrystals. Journal of the American Ceramic Society, 2018, 101,<br>4654-4668.                                      | 1.9  | 14        |

| #   | Article                                                                                                                                                                                                                        | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Photoluminescence and energy transfer in transparent glass-ceramics based on GdF3:RE3+ (REÂ=ÂTb, Eu)<br>nanocrystals. Journal of Rare Earths, 2019, 37, 1137-1144.                                                             | 2.5 | 14        |
| 92  | Câ^'O and Not Câ^'C Bond Cleavage Starts the Polymerization of β-Butyrolactone with Potassium Anions of Alkalide. Macromolecules, 2006, 39, 6832-6837.                                                                         | 2.2 | 13        |
| 93  | Luminescence spectroscopy of rare earth-doped oxychloride lead borate glasses. Journal of<br>Luminescence, 2011, 131, 649-652.                                                                                                 | 1.5 | 13        |
| 94  | Technological aspects for Tb3+-doped luminescent sol–gel nanomaterials. Ceramics International,<br>2015, 41, 11670-11679.                                                                                                      | 2.3 | 13        |
| 95  | Growth and characterization of new disordered crystals for the design of all-solid-state lasers.<br>International Journal of Electronics, 1996, 81, 457-465.                                                                   | 0.9 | 12        |
| 96  | Influence of temperature on the optical properties of LiTaO3:Cr. Applied Physics Letters, 1997, 70, 2505-2507.                                                                                                                 | 1.5 | 12        |
| 97  | Effect of heat treatment on Er3+ containing multicomponent oxyfluoride lead borate glass system.<br>Journal of Non-Crystalline Solids, 2008, 354, 492-496.                                                                     | 1.5 | 12        |
| 98  | Structural and optical properties of antimony-germanate-borate glass and glass fiber co-doped Eu3+<br>and Ag nanoparticles. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018,<br>201, 1-7.          | 2.0 | 12        |
| 99  | Spectroscopy and energy transfer in lead borate glasses doubly doped with Tm3+ and Dy3+ ions.<br>Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 192, 140-145.                                    | 2.0 | 12        |
| 100 | Studying structural and local dynamics in model H-bonded active ingredient — Curcumin in the supercooled and glassy states at various thermodynamic conditions. European Journal of Pharmaceutical Sciences, 2019, 135, 38-50. | 1.9 | 12        |
| 101 | Erbium-doped lead silicate glass for near-infrared emission and temperature-dependent up-conversion applications. Opto-electronics Review, 2017, 25, 238-241.                                                                  | 2.4 | 11        |
| 102 | Er^3+/Yb^3+ co-doped lead silicate glasses and their optical temperature sensing ability. Optics Express, 2017, 25, 28501.                                                                                                     | 1.7 | 11        |
| 103 | Influence of acceptor concentration on crystallization behavior and luminescence properties of lead borate glasses co-doped with Dy3+ and Tb3+ ions. Journal of Alloys and Compounds, 2018, 749, 561-566.                      | 2.8 | 11        |
| 104 | Holmium doped barium gallo-germanate glasses for near-infrared luminescence at 2000â€ <sup>–</sup> nm. Journal of<br>Luminescence, 2019, 215, 116625.                                                                          | 1.5 | 11        |
| 105 | Lead-based glasses doped with Dy3+ ions for W-LEDs. Materials Letters, 2019, 254, 62-64.                                                                                                                                       | 1.3 | 11        |
| 106 | Influence of transition metal ion concentration on near-infrared emission of Ho3+ in barium gallo-germanate glasses. Journal of Alloys and Compounds, 2019, 793, 107-114.                                                      | 2.8 | 11        |
| 107 | Emission of Eu3+ in sol-gel oxyfluoride glass materials obtained by different preparation methods.<br>Journal of Rare Earths, 2014, 32, 269-272.                                                                               | 2.5 | 10        |
| 108 | Selective oxide modifiers M2O3 (M=Al, Ga) as crystallizing agents in Er3+-doped lead phosphate glass host. Ceramics International, 2015, 41, 4334-4339.                                                                        | 2.3 | 10        |

| #   | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Investigation of the aluminum oxide content on structural and optical properties of germanium<br>glasses doped with RE ions. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy,<br>2018, 201, 143-152. | 2.0 | 10        |
| 110 | Influence of excitation wavelengths on up-converted luminescence sensing behavior of Er3+ ions in lead-free germanate glass. Journal of Luminescence, 2018, 193, 34-38.                                                    | 1.5 | 10        |
| 111 | Studies on the internal medium-range ordering and high pressure dynamics in modified ibuprofens.<br>Physical Chemistry Chemical Physics, 2020, 22, 295-305.                                                                | 1.3 | 10        |
| 112 | Sensitization of Ho3+ - doped fluoroindate glasses for near and mid-infrared emission. Optical<br>Materials, 2020, 101, 109707.                                                                                            | 1.7 | 10        |
| 113 | Sol-Gel Glass-Ceramic Materials Containing CaF2:Eu3+ Fluoride Nanocrystals for Reddish-Orange<br>Photoluminescence Applications. Applied Sciences (Switzerland), 2019, 9, 5490.                                            | 1.3 | 10        |
| 114 | Influence of thermal treatment on spectroscopic properties of Er3+ ions in multicomponent<br>InF3-based glasses. Journal of Alloys and Compounds, 2005, 398, 272-275.                                                      | 2.8 | 9         |
| 115 | Photochemical, Electrochemical and Enzymatic Methods for Etherâ€Bond Cleavage. European Journal of<br>Organic Chemistry, 2006, 2006, 2485-2497.                                                                            | 1.2 | 9         |
| 116 | Optically induced carbazolyl containing polyethers: Concentration effects. Journal of Molecular Structure, 2008, 887, 205-208.                                                                                             | 1.8 | 9         |
| 117 | Spectroscopic properties of Pr3+ and Er3+ ions in lead-free borate glasses modified by BaF2. Optical Materials, 2015, 47, 548-554.                                                                                         | 1.7 | 9         |
| 118 | Effect of fluoride ions on the optical properties of Eu 3+ :PbF 2 nanocrystals embedded into sol–gel<br>host materials. Materials Chemistry and Physics, 2016, 174, 138-142.                                               | 2.0 | 9         |
| 119 | Optical Characterization of Nano- and Microcrystals of EuPO4 Created by One-Step Synthesis of Antimony-Germanate-Silicate Class Modified by P2O5. Materials, 2017, 10, 1059.                                               | 1.3 | 9         |
| 120 | Polymorphs of oxindole as the core structures in bioactive compounds. CrystEngComm, 2018, 20, 1739-1745.                                                                                                                   | 1.3 | 9         |
| 121 | Effect of the initial reagents concentration on final crystals size and luminescence properties of PbF2:Eu3+ phosphors. Journal of Alloys and Compounds, 2018, 730, 150-160.                                               | 2.8 | 9         |
| 122 | Investigation of infrared-to-visible conversion in cubic Cs2NaErCl6crystals. Journal of Physics<br>Condensed Matter, 1995, 7, 7397-7404.                                                                                   | 0.7 | 8         |
| 123 | Optical properties and concentration dependence of the luminescence of Pr3+ ion in fluoroindate glass. Physica Status Solidi (B): Basic Research, 2003, 237, 581-591.                                                      | 0.7 | 8         |
| 124 | Non-linear effect of 18-crown-6 in propylene oxide polymerization with potassium glycidoxide used as the inimer. Polymer, 2004, 45, 7047-7051.                                                                             | 1.8 | 8         |
| 125 | PbWO4 formation during controlled crystallization of lead borate glasses. Ceramics International, 2013, 39, 9151-9156.                                                                                                     | 2.3 | 8         |
| 126 | Influence of Gd3+ concentration on luminescence properties of Eu3+ ions in sol-gel materials. Journal of Molecular Structure, 2016, 1126, 259-264.                                                                         | 1.8 | 8         |

| #   | Article                                                                                                                                                                                | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Crystallization of lead-based and lead-free oxyfluoride germanate glasses doped with erbium during heat treatment process. Journal of Non-Crystalline Solids, 2018, 501, 121-125.      | 1.5 | 8         |
| 128 | Tb3+/Eu3+ co-doped silica xerogels prepared via low-temperature sol-gel method and their luminescence properties. Materials Letters, 2019, 235, 101-103.                               | 1.3 | 8         |
| 129 | Investigation of the TeO2/GeO2 Ratio on the Spectroscopic Properties of Eu3+-Doped Oxide Glasses for Optical Fiber Application. Materials, 2022, 15, 117.                              | 1.3 | 8         |
| 130 | Structure of poly(propylene oxide) obtained with potassium glycidoxide in the presence of crown ether. Rapid Communications in Mass Spectrometry, 2004, 18, 716-720.                   | 0.7 | 7         |
| 131 | Thermal stability and concentration effect in erbium-doped lead fluoroborate glasses. Journal of<br>Materials Science: Materials in Electronics, 2006, 17, 245-249.                    | 1.1 | 7         |
| 132 | Up-conversion processes of rare earth ions in heavy metal glasses. Journal of Rare Earths, 2011, 29, 1192-1194.                                                                        | 2.5 | 7         |
| 133 | Energy transfer processes from Yb3+ to Ln3+ (Ln=Er or Tm) in heavy metal glasses. Journal of Rare<br>Earths, 2014, 32, 273-276.                                                        | 2.5 | 7         |
| 134 | Reddish-orange Eu3+-doped sol-gel emitters based on LaF3 nanocrystals – Synthesis, structural and photoluminescence investigations. Optical Materials, 2019, 89, 276-282.              | 1.7 | 7         |
| 135 | Spontaneous self-oligomerization of potassium glycidoxide $\hat{a} \in A$ simple way to new cyclic polyfunctional macroinitiator. Reactive and Functional Polymers, 2005, 65, 259-266. | 2.0 | 6         |
| 136 | Excitation and emission of Pr3+:PLZT ceramics. Ceramics International, 2016, 42, 17822-17826.                                                                                          | 2.3 | 6         |
| 137 | Pr <sup>3+</sup> /Yb <sup>3+</sup> : <scp>PLZT</scp> ferroelectric ceramics for nearâ€infrared radiation at 1340 nm. Journal of the American Ceramic Society, 2017, 100, 1295-1299.    | 1.9 | 6         |
| 138 | Structure and Luminescence Properties of Transparent Germanate Glass-Ceramics Co-Doped with Ni2+/Er3+ for Near-Infrared Optical Fiber Application. Nanomaterials, 2021, 11, 2115.      | 1.9 | 6         |
| 139 | Investigation of the Cr3+ + sites in SrLaGaO4 crystal. Chemical Physics Letters, 1995, 242, 623-626.                                                                                   | 1.2 | 5         |
| 140 | Optical characterization of BaLaALO4:Nd. Journal of Alloys and Compounds, 1997, 259, 69-73.                                                                                            | 2.8 | 5         |
| 141 | Infrared-to-visible conversion luminescence of Er3+ ions in lead borate transparent glass-ceramics.<br>Optical Materials, 2009, 31, 1781-1783.                                         | 1.7 | 5         |
| 142 | Insight into hydrogen bonding of terephthalamides with amino acids: Synthesis, structural and spectroscopic investigations. Tetrahedron, 2017, 73, 2901-2912.                          | 1.0 | 5         |
| 143 | Excitation energy transfer between Er3+ and Tm3+ in LiNbO3. Journal of Applied Spectroscopy, 1995, 62, 903-909.                                                                        | 0.3 | 4         |
| 144 | Temperature-Controlled Devitrification of Oxyfluoride Borate Glasses. Solid State Phenomena, 2007, 130, 263-266.                                                                       | 0.3 | 4         |

| #   | Article                                                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Spectroscopic and thermal studies on 2- and 4-phenyl-1 H -imidazoles. Spectrochimica Acta - Part A:<br>Molecular and Biomolecular Spectroscopy, 2017, 183, 378-386.                                                                               | 2.0 | 4         |
| 146 | Enhanced and Longâ€Lived Nearâ€Infrared Luminescence of <scp><scp>Er</scp></scp> <sup>3+</sup> Ions<br>in Lead Borate Glassâ€Ceramics Containing PbWO <sub>4</sub> Nanocrystals. Journal of the American<br>Ceramic Society, 2013, 96, 1685-1687. | 1.9 | 3         |
| 147 | Luminescence investigation of Fe (III) – rhodamine B complexes obtained by solvent extraction. Journal of Luminescence, 2013, 139, 35-39.                                                                                                         | 1.5 | 3         |
| 148 | Structural and optical properties of Eu3+/Gd3+ ions in silica xerogels and powders obtained by sol–gel method. Journal of Molecular Structure, 2016, 1126, 29-36.                                                                                 | 1.8 | 3         |
| 149 | Spectroscopic Properties of Eu <sup>3+</sup> Ions in Sol–Gel Materials Containing Calcium Fluoride<br>Nanocrystals. Physica Status Solidi (B): Basic Research, 2020, 257, 1900478.                                                                | 0.7 | 3         |
| 150 | Optical spectra and lifetimes of thulium-doped SrLaAlO4. Journal of Applied Spectroscopy, 1995, 62, 685-692.                                                                                                                                      | 0.3 | 2         |
| 151 | Electronic spectra and fluorescence of dithiinodiquinoline compounds. An experimental and theoretical study. Journal of Luminescence, 2018, 197, 7-17.                                                                                            | 1.5 | 2         |
| 152 | Green up-conversion luminescence of erbium-doped oxyfluoride germanate fiber under continuous-wave laser-diode excitation. Materials Letters, 2018, 216, 131-134.                                                                                 | 1.3 | 2         |
| 153 | Crystallization Mechanism and Optical Properties of Antimony-Germanate-Silicate Glass-Ceramic<br>Doped with Europium Ions. Materials, 2022, 15, 3797.                                                                                             | 1.3 | 2         |
| 154 | Rare earth doped lead-free germanate glasses for modern photonics. Photonics Letters of Poland, 2014, 6, .                                                                                                                                        | 0.2 | 0         |
| 155 | Replacement of glass-former B2O3 by GeO2 in amorphous host evidenced by optical methods.<br>Photonics Letters of Poland, 2017, 9, 113.                                                                                                            | 0.2 | Ο         |