Marina A Z Panova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4381728/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Site-specific genetic divergence in parallel hybrid zones suggests nonallopatric evolution of reproductive barriers. Molecular Ecology, 2006, 15, 4021-4031.	3.9	1,818
2	PARALLEL EVOLUTION OF LOCAL ADAPTATION AND REPRODUCTIVE ISOLATION IN THE FACE OF GENE FLOW. Evolution; International Journal of Organic Evolution, 2014, 68, 935-949.	2.3	165
3	Repeated evolution of reproductive isolation in a marine snail: unveiling mechanisms of speciation. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 1735-1747.	4.0	151
4	Shared and nonshared genomic divergence in parallel ecotypes of <i><scp>L</scp>ittorina saxatilis</i> at a local scale. Molecular Ecology, 2016, 25, 287-305.	3.9	142
5	Clines on the seashore: The genomic architecture underlying rapid divergence in the face of gene flow. Evolution Letters, 2018, 2, 297-309.	3.3	103
6	Multiple chromosomal rearrangements in a hybrid zone between <i>Littorina saxatilis</i> ecotypes. Molecular Ecology, 2019, 28, 1375-1393.	3.9	103
7	Genomic architecture of parallel ecological divergence: Beyond a single environmental contrast. Science Advances, 2019, 5, eaav9963.	10.3	92
8	Glacial History of the North Atlantic Marine Snail, Littorina saxatilis, Inferred from Distribution of Mitochondrial DNA Lineages. PLoS ONE, 2011, 6, e17511.	2.5	84
9	Do the same genes underlie parallel phenotypic divergence in different <i><scp>L</scp>ittorina saxatilis</i> populations?. Molecular Ecology, 2014, 23, 4603-4616.	3.9	73
10	DNA Extraction Protocols for Whole-Genome Sequencing in Marine Organisms. Methods in Molecular Biology, 2016, 1452, 13-44.	0.9	57
11	Extreme Female Promiscuity in a Non-Social Invertebrate Species. PLoS ONE, 2010, 5, e9640.	2.5	52
12	Case studies and mathematical models of ecological speciation. 3: Ecotype formation in a Swedish snail. Molecular Ecology, 2009, 18, 4006-4023.	3.9	44
13	Complete lack of mitochondrial divergence between two species of NE Atlantic marine intertidal gastropods. Journal of Evolutionary Biology, 2009, 22, 2000-2011.	1.7	42
14	High Levels of Multiple Paternity in Littorina saxatilis: Hedging the Bets?. Journal of Heredity, 2007, 98, 705-711.	2.4	39
15	Targeted resequencing reveals geographical patterns of differentiation for loci implicated in parallel evolution. Molecular Ecology, 2016, 25, 3169-3186.	3.9	27
16	Colour polymorphism in the polychaeteHarmothoe imbricata(Linnaeus, 1767). Marine Biology Research, 2011, 7, 54-62.	0.7	24
17	Species and gene divergence in Littorina snails detected by array comparative genomic hybridization. BMC Genomics, 2014, 15, 687.	2.8	23
18	Microsatellite cross-species amplification in the genus Littorina and detection of null alleles in Littorina saxatilis. Journal of Molluscan Studies, 2008, 74, 111-117.	1.2	21

MARINA A Z PANOVA

#	Article	IF	CITATIONS
19	The Effect of Multiple Paternity on Genetic Diversity of Small Populations during and after Colonisation. PLoS ONE, 2013, 8, e75587.	2.5	20
20	Mechanisms of Adaptive Divergence and Speciation in Littorina saxatilis: Integrating Knowledge from Ecology and Genetics with New Data Emerging from Genomic Studies. Population Genomics, 2017, , 277-301.	0.5	20
21	Microscale variation in Aat (aspartate aminotransferase) is supported by activity differences between upper and lower shore allozymes of Littorina saxatilis. Marine Biology, 2004, 144, 1157-1164.	1.5	19
22	Genetic differentiation on multiple spatial scales in an ecotype-forming marine snail with limited dispersal: Littorina saxatilis. Biological Journal of the Linnean Society, 2008, 94, 31-40.	1.6	17
23	Spatial genetic structure in a crustacean herbivore highlights the need for local considerations in Baltic Sea biodiversity management. Evolutionary Applications, 2020, 13, 974-990.	3.1	17
24	Phylogeographic history of flat periwinkles, Littorina fabalis and L. obtusata. BMC Evolutionary Biology, 2020, 20, 23.	3.2	16
25	Annotating public fungal ITS sequences from the built environment according to the MIxS-Built Environment standard – a report from a May 23-24, 2016 workshop (Gothenburg, Sweden). MycoKeys, 0, 16, 1-15.	1.9	16
26	The Littorina sequence database (LSD) – an online resource for genomic data. Molecular Ecology Resources, 2012, 12, 142-148.	4.8	15
27	Non-random paternity of offspring in a highly promiscuous marine snail suggests postcopulatory sexual selection. Behavioral Ecology and Sociobiology, 2016, 70, 1357-1366.	1.4	15
28	Size of genera – biology or taxonomy?. Zoologica Scripta, 2015, 44, 106-116.	1.7	14
29	Proteomic similarity of the Littorinid snails in the evolutionary context. PeerJ, 2020, 8, e8546.	2.0	13
30	Comparative mitogenomic analysis of three species of periwinkles: Littorina fabalis, L. obtusata and L. saxatilis. Marine Genomics, 2017, 32, 41-47.	1.1	12
31	Population genomics of parallel evolution in gene expression and gene sequence during ecological adaptation. Scientific Reports, 2018, 8, 16147.	3.3	12
32	Genetic and morphological divergence between <i>Littorina fabalis</i> ecotypes in Northern Europe. Journal of Evolutionary Biology, 2021, 34, 97-113.	1.7	10
33	Population structure and phylogeography of two North Atlantic Littorina species with contrasting larval development. Marine Biology, 2021, 168, 1.	1.5	10
34	Diet-dependent gene expression highlights the importance of Cytochrome P450 in detoxification of algal secondary metabolites in a marine isopod. Scientific Reports, 2018, 8, 16824.	3.3	8
35	Premating barriers in young sympatric snail species. Scientific Reports, 2021, 11, 5720.	3.3	7
36	Divergence together with microbes: A comparative study of the associated microbiomes in the closely related Littorina species. PLoS ONE, 2021, 16, e0260792.	2.5	7

MARINA A Z PANOVA

#	Article	IF	CITATIONS
37	An allozyme polymorphism is associated with a large chromosomal inversion in the marine snail <i>Littorina fabalis</i> . Evolutionary Applications, 2023, 16, 279-292.	3.1	7
38	A molecular phylogeny of the northâ€east Atlantic species of the genus <i>Idotea</i> (Isopoda) with focus on the Baltic Sea. Zoologica Scripta, 2017, 46, 188-199.	1.7	6
39	First insights into the gut microbiomes and the diet of the <i>Littorina</i> snail ecotypes, a recently emerged marine evolutionary model. Evolutionary Applications, 2023, 16, 365-378.	3.1	4
40	Multiple paternity: determining the minimum number of sires of a large brood. Molecular Ecology Resources, 2010, 10, 282-291.	4.8	3
41	Characterization of new EST-linked microsatellites in the rough periwinkle (Littorina saxatilis) and application for parentage analysis. Journal of Molluscan Studies, 2013, 79, 369-371.	1.2	1
42	Transcriptomic resources for evolutionary studies in flat periwinkles and related species. Scientific Data, 2020, 7, 73.	5.3	1