Srinivas Peeta

List of Publications by Citations

Source: https://exaly.com/author-pdf/4381243/srinivas-peeta-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

162 4,201 33 59 g-index h-index citations papers 6.25 167 5,090 4.3 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
162	Foundations of Dynamic Traffic Assignment: The Past, the Present and the Future. <i>Networks and Spatial Economics</i> , 2001 , 1, 233-265	1.9	480
161	Predicting station-level hourly demand in a large-scale bike-sharing network: A graph convolutional neural network approach. <i>Transportation Research Part C: Emerging Technologies</i> , 2018 , 97, 258-276	8.4	175
160	Pre-disaster investment decisions for strengthening a highway network. <i>Computers and Operations Research</i> , 2010 , 37, 1708-1719	4.6	148
159	A generalized modeling framework to analyze interdependencies among infrastructure systems. <i>Transportation Research Part B: Methodological</i> , 2011 , 45, 553-579	7.2	133
158	Multiple user classes real-time traffic assignment for online operations: A rolling horizon solution framework. <i>Transportation Research Part C: Emerging Technologies</i> , 1995 , 3, 83-98	8.4	128
157	System optimal and user equilibrium time-dependent traffic assignment in congested networks. <i>Annals of Operations Research</i> , 1995 , 60, 81-113	3.2	117
156	Identification of vehicle sensor locations for link-based network traffic applications. <i>Transportation Research Part B: Methodological</i> , 2009 , 43, 873-894	7.2	107
155	Content of Variable Message Signs and On-Line Driver Behavior. <i>Transportation Research Record</i> , 2000 , 1725, 102-108	1.7	106
154	Perception updating and day-to-day travel choice dynamics in traffic networks with information provision. <i>Transportation Research Part C: Emerging Technologies</i> , 1998 , 6, 189-212	8.4	102
153	Vulnerability assessment and mitigation for the Chinese railway system under floods. <i>Reliability Engineering and System Safety</i> , 2015 , 137, 58-68	6.3	82
152	Nonlinear Consensus-Based Connected Vehicle Platoon Control Incorporating Car-Following Interactions and Heterogeneous Time Delays. <i>IEEE Transactions on Intelligent Transportation Systems</i> , 2019 , 20, 2209-2219	6.1	76
151	Dynamic Game Theoretic Model of Multi-Layer Infrastructure Networks. <i>Networks and Spatial Economics</i> , 2005 , 5, 147-178	1.9	70
150	Planning for Evacuation: Insights from an Efficient Network Design Model. <i>Journal of Infrastructure Systems</i> , 2009 , 15, 21-30	2.9	65
149	An adaptive information fusion model to predict the short-term link travel time distribution in dynamic traffic networks. <i>Transportation Research Part B: Methodological</i> , 2012 , 46, 235-252	7.2	64
148	. IEEE Transactions on Intelligent Transportation Systems, 2015 , 16, 2501-2510	6.1	63
147	A Hybrid Model for Driver Route Choice Incorporating En-Route Attributes and Real-Time Information Effects. <i>Networks and Spatial Economics</i> , 2005 , 5, 21-40	1.9	63
146	Multicommodity Maximal Covering Network Design Problem for Planning Critical Routes for Earthquake Response. <i>Transportation Research Record</i> , 2003 , 1857, 1-10	1.7	61

(2014-2005)

145	Behavior-based analysis of freeway cartruck interactions and related mitigation strategies. <i>Transportation Research Part B: Methodological</i> , 2005 , 39, 417-451	7.2	60
144	Integral-Sliding-Mode Braking Control for a Connected Vehicle Platoon: Theory and Application. <i>IEEE Transactions on Industrial Electronics</i> , 2019 , 66, 4618-4628	8.9	56
143	Non-lane-discipline-based car-following model considering the effects of two-sided lateral gaps. <i>Nonlinear Dynamics</i> , 2015 , 80, 227-238	5	54
142	Consensus-Based Cooperative Control for Multi-Platoon Under the Connected Vehicles Environment. <i>IEEE Transactions on Intelligent Transportation Systems</i> , 2019 , 20, 2220-2229	6.1	53
141	Multiclass traffic assignment model for mixed traffic flow of human-driven vehicles and connected and autonomous vehicles. <i>Transportation Research Part B: Methodological</i> , 2019 , 126, 139-168	7.2	52
140	Estimating dilemma zone hazard function at high speed isolated intersection. <i>Transportation Research Part C: Emerging Technologies</i> , 2011 , 19, 400-412	8.4	51
139	. IEEE Transactions on Intelligent Transportation Systems, 2018 , 19, 38-47	6.1	50
138	A car-following model considering the effect of electronic throttle opening angle under connected environment. <i>Nonlinear Dynamics</i> , 2016 , 85, 2115-2125	5	50
137	Multiple measures-based chaotic time series for traffic flow prediction based on Bayesian theory. <i>Nonlinear Dynamics</i> , 2016 , 85, 179-194	5	48
136	Platoon Control of Connected Multi-Vehicle Systems Under V2X Communications: Design and Experiments. <i>IEEE Transactions on Intelligent Transportation Systems</i> , 2020 , 21, 1891-1902	6.1	48
135	Multi-objective optimization of integrated solar absorption cooling and heating systems for medium-sized office buildings. <i>Renewable Energy</i> , 2013 , 52, 67-78	8.1	47
134	Nonlinear finite-time consensus-based connected vehicle platoon control under fixed and switching communication topologies. <i>Transportation Research Part C: Emerging Technologies</i> , 2018 , 93, 525-543	8.4	46
133	Traffic Equilibrium and Charging Facility Locations for Electric Vehicles. <i>Networks and Spatial Economics</i> , 2017 , 17, 435-457	1.9	40
132	Cooperative adaptive cruise control for connected autonomous vehicles by factoring communication-related constraints. <i>Transportation Research Part C: Emerging Technologies</i> , 2020 , 113, 124-145	8.4	40
131	Impacts of internal migration, household registration system, and family planning policy on travel mode choice in China. <i>Travel Behaviour & Society</i> , 2018 , 13, 128-143	5.3	36
130	A real-time deployable model predictive control-based cooperative platooning approach for connected and autonomous vehicles. <i>Transportation Research Part B: Methodological</i> , 2019 , 128, 271-30	7.2	34
129	Evaluating the energy consumption of electric vehicles based on car-following model under non-lane discipline. <i>Nonlinear Dynamics</i> , 2015 , 82, 629-641	5	33
128	A Stochastic Optimization Model to Reduce Expected Post-Disaster Response Time Through Pre-Disaster Investment Decisions. <i>Networks and Spatial Economics</i> , 2014 , 14, 271-295	1.9	33

127	Cooperative Adaptive Cruise Control for a Platoon of Connected and Autonomous Vehicles considering Dynamic Information Flow Topology. <i>Transportation Research Record</i> , 2019 , 2673, 185-198	1.7	31
126	Eco-system optimal time-dependent flow assignment in a congested network. <i>Transportation Research Part B: Methodological</i> , 2016 , 94, 217-239	7.2	31
125	Behavior-consistent real-time traffic routing under information provision. <i>Transportation Research Part C: Emerging Technologies</i> , 2009 , 17, 642-661	8.4	31
124	Information-based network control strategies consistent with estimated driver behavior. <i>Transportation Research Part B: Methodological</i> , 2009 , 43, 73-96	7.2	31
123	Multi-period equilibrium modeling planning framework for tradable credit schemes. <i>Transportation Research, Part E: Logistics and Transportation Review</i> , 2016 , 93, 177-198	9	30
122	An aggregate approach to model evacuee behavior for no-notice evacuation operations. <i>Transportation</i> , 2013 , 40, 671-696	4	29
121	Risk-based spatial zone determination problem for stage-based evacuation operations. Transportation Research Part C: Emerging Technologies, 2014 , 41, 73-89	8.4	29
120	Recasting Dilemma Zone Design as a Marginal Cost B enefit Problem. <i>Transportation Research Record</i> , 2007 , 2035, 88-96	1.7	29
119	. IEEE Transactions on Intelligent Transportation Systems, 2017 , 18, 3408-3420	6.1	27
118	Routing aspects of electric vehicle drivers and their effects on network performance. Transportation Research, Part D: Transport and Environment, 2016 , 46, 246-266	6.4	27
117	Personal and societal impacts of motorcycle ban policy on motorcyclists[home-to-work morning commute in China. <i>Travel Behaviour & Society</i> , 2020 , 19, 137-150	5.3	26
116	Impacts of personalized accessibility information on residential location choice and travel behavior. <i>Travel Behaviour & Society</i> , 2020 , 19, 99-111	5.3	26
115	Generalized Singular Value Decomposition Approach for Consistent On-Line Dynamic Traffic Assignment. <i>Transportation Research Record</i> , 1999 , 1667, 77-87	1.7	25
114	Promoting zero-emissions vehicles using robust multi-period tradable credit scheme. Transportation Research, Part D: Transport and Environment, 2019 , 75, 265-285	6.4	24
113	Deployment of roadside units to overcome connectivity gap in transportation networks with mixed traffic. <i>Transportation Research Part C: Emerging Technologies</i> , 2020 , 111, 496-512	8.4	21
112	Pre-disaster investment decisions for strengthening the Chinese railway system under earthquakes. <i>Transportation Research, Part E: Logistics and Transportation Review,</i> 2017 , 105, 39-59	9	21
111	Behavior-based consistency-seeking models as deployment alternatives to dynamic traffic assignment models. <i>Transportation Research Part C: Emerging Technologies</i> , 2006 , 14, 114-138	8.4	21
110	Impacts of Property Accessibility and Neighborhood Built Environment on Single-Unit and Multiunit Residential Property Values. <i>Transportation Research Record</i> , 2016 , 2568, 103-112	1.7	21

(2015-2001)

109	Real-Time Variable Message Sign B ased Route Guidance Consistent with Driver Behavior. Transportation Research Record, 2001 , 1752, 117-125	1.7	20	
108	Integrating social network analysis with analytic network process for international development project selection. <i>Expert Systems With Applications</i> , 2015 , 42, 5128-5138	7.8	19	
107	Automatic Real-Time Detection and Correction of Erroneous Detector Data with Fourier Transforms for Online Traffic Control Architectures. <i>Transportation Research Record</i> , 2002 , 1811, 1-11	1.7	19	
106	Raill ruck Multimodal Freight Collaboration: Truck Freight Carrier Perspectives in the United States. <i>Journal of Transportation Engineering</i> , 2015 , 141, 04015023		18	
105	A marginal utility day-to-day traffic evolution model based on one-step strategic thinking. <i>Transportation Research Part B: Methodological</i> , 2016 , 84, 237-255	7.2	18	
104	Driving simulator-based study of compliance behaviour with dynamic message sign route guidance. <i>IET Intelligent Transport Systems</i> , 2015 , 9, 765-772	2.4	18	
103	Analysis of the factors that influence the relationship between business air travel and videoconferencing. <i>Transportation Research, Part A: Policy and Practice</i> , 2009 , 43, 709-721	3.7	18	
102	A day-to-day dynamical model for the evolution of path flows under disequilibrium of traffic networks with fixed demand. <i>Transportation Research Part B: Methodological</i> , 2015 , 80, 235-256	7.2	17	
101	Network design for personal rapid transit under transit-oriented development. <i>Transportation Research Part C: Emerging Technologies</i> , 2015 , 55, 351-362	8.4	17	
100	Analytical model for information flow propagation wave under an information relay control strategy in a congested vehicle-to-vehicle communication environment. <i>Transportation Research Part C: Emerging Technologies</i> , 2018 , 94, 1-18	8.4	17	
99	A sliding mode controller for vehicular traffic flow. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2016 , 462, 38-47	3.3	17	
98	Dynamic Resource Allocation Problem for Transportation Network Evacuation. <i>Networks and Spatial Economics</i> , 2014 , 14, 505-530	1.9	17	
97	Modeling and Mitigation of Car-Truck Interactions on Freeways. <i>Transportation Research Record</i> , 2004 , 1899, 117-126	1.7	16	
96	Modeling the information flow propagation wave under vehicle-to-vehicle communications. <i>Transportation Research Part C: Emerging Technologies</i> , 2017 , 85, 377-395	8.4	15	
95	Cooperative Adaptive Cruise Control for Connected Autonomous Vehicles by Factoring Communication-Related Constraints. <i>Transportation Research Procedia</i> , 2019 , 38, 242-262	2.4	15	
94	Impacts of congestion pricing and reward strategies on automobile travelers Imorning commute mode shift decisions. <i>Transportation Research, Part A: Policy and Practice</i> , 2019 , 125, 72-88	3.7	15	
93	Entropy weighted average method for the determination of a single representative path flow solution for the static user equilibrium traffic assignment problem. <i>Transportation Research Part B: Methodological</i> , 2015 , 71, 213-229	7.2	15	
92	Model and a solution algorithm for the dynamic resource allocation problem for large-scale transportation network evacuation. <i>Transportation Research Part C: Emerging Technologies</i> , 2015 , 59, 233-247	8.4	15	

91	Identifying elderly travel time disparities using a correlated grouped random parameters hazard-based duration approach. <i>Research in Transportation Business and Management</i> , 2019 , 30, 1003	69 ^{2.8}	15
90	Robustness of the off-line a priori stochastic dynamic traffic assignment solution for on-line operations. <i>Transportation Research Part C: Emerging Technologies</i> , 1999 , 7, 281-303	8.4	15
89	Dynamic and disequilibrium analysis of interdependent infrastructure systems. <i>Transportation Research Part B: Methodological</i> , 2014 , 67, 357-381	7.2	14
88	A Self-Adaptive Dynamic Recognition Model for Fatigue Driving Based on Multi-Source Information and Two Levels of Fusion. <i>Sensors</i> , 2015 , 15, 24191-213	3.8	14
87	A carrier collaboration problem for less-than-truckload carriers: characteristics and carrier collaboration model. <i>Transportmetrica A: Transport Science</i> , 2014 , 10, 327-349	2.5	14
86	Centralized Time-Dependent Multiple-Carrier Collaboration Problem for Less-Than-Truckload Carriers. <i>Transportation Research Record</i> , 2011 , 2263, 26-34	1.7	14
85	On-line calibration of behavior parameters for behavior-consistent route guidance. <i>Transportation Research Part B: Methodological</i> , 2009 , 43, 403-421	7.2	13
84	Fuzzy Control Model Optimization for Behavior-Consistent Traffic Routing Under Information Provision. <i>IEEE Transactions on Intelligent Transportation Systems</i> , 2008 , 9, 27-37	6.1	13
83	Rail-truck multimodal freight collaboration: a statistical analysis of freight-shipper perspectives. <i>Transportation Planning and Technology</i> , 2016 , 39, 484-506	1.6	13
82	Comprehending the roles of traveler perception of travel time reliability on route choice behavior. <i>Travel Behaviour & Society</i> , 2019 , 16, 13-22	5.3	12
81	Smooth-Switching Control-Based Cooperative Adaptive Cruise Control by Considering Dynamic Information Flow Topology. <i>Transportation Research Record</i> , 2020 , 2674, 444-458	1.7	12
80	An Analytical Model to Characterize the Spatiotemporal Propagation of Information Under Vehicle-to-Vehicle Communications. <i>IEEE Transactions on Intelligent Transportation Systems</i> , 2018 , 19, 3-12	6.1	12
79	Data-Consistent Fuzzy Approach for Online Driver Behavior Under Information Provision. <i>Transportation Research Record</i> , 2002 , 1803, 76-86	1.7	12
78	Optimal toll design problems under mixed traffic flow of human-driven vehicles and connected and autonomous vehicles. <i>Transportation Research Part C: Emerging Technologies</i> , 2021 , 125, 102952	8.4	12
77	Managing morning commute congestion with a tradable credit scheme under commuter heterogeneity and market loss aversion behavior. <i>Transportmetrica B</i> , 2019 , 7, 1780-1808	1.8	12
76	Clearance Time Estimation for Incorporating Evacuation Risk in Routing Strategies for Evacuation Operations. <i>Networks and Spatial Economics</i> , 2015 , 15, 743-764	1.9	11
75	A binary probit model to analyze freight transportation decision-maker perspectives for container shipping on the Northern Sea Route. <i>Maritime Economics and Logistics</i> , 2018 , 20, 358-374	2.6	11
74	Sensitivity analysis based approximation models for day-to-day link flow evolution process. <i>Transportation Research Part B: Methodological</i> , 2016 , 92, 35-53	7.2	11

(2006-2017)

73	An extended microscopic traffic flow model based on the spring-mass system theory. <i>Modern Physics Letters B</i> , 2017 , 31, 1750090	1.6	10	
7 2	Multiclass information flow propagation control under vehicle-to-vehicle communication environments. <i>Transportation Research Part B: Methodological</i> , 2019 , 129, 96-121	7.2	10	
71	Online Stochastic Routing Incorporating Real-Time Traffic Information. <i>Transportation Research Record</i> , 2013 , 2334, 95-104	1.7	10	
70	SLOPE-BASED PATH SHIFT PROPENSITY ALGORITHM FOR THE STATIC TRAFFIC ASSIGNMENT PROBLEM. International Journal for Traffic and Transport Engineering, 2014 , 4, 297-319	1	10	
69	Chinal millennial car travelers I mode shift responses under congestion pricing and reward policies: A case study in Beijing. <i>Travel Behaviour & Society</i> , 2021 , 23, 86-99	5.3	10	
68	Graph-Based Modeling of Information Flow Evolution and Propagation under V2V Communications-Based Advanced Traveler Information Systems. <i>Computer-Aided Civil and Infrastructure Engineering</i> , 2016 , 31, 499-514	8.4	10	
67	A Multi-Period Tradable Credit Scheme Incorporating Interest Rate and Traveler Value-of-Time Heterogeneity to Manage Traffic System Emissions. <i>Frontiers in Built Environment</i> , 2018 , 4,	2.2	10	
66	Routing and charging locations for electric vehicles for intercity trips. <i>Transportation Planning and Technology</i> , 2017 , 40, 393-419	1.6	9	
65	Behavior-consistent information-based network traffic control for evacuation operations. <i>Transportation Research Part C: Emerging Technologies</i> , 2014 , 48, 339-359	8.4	9	
64	Update Strategies for Restricted Master Problems for User Equilibrium Traffic Assignment Problem: Computational Study. <i>Transportation Research Record</i> , 2012 , 2283, 131-142	1.7	9	
63	Spatiotemporal vehicle tracking: the use of unsupervised learning-based segmentation and object tracking. <i>IEEE Robotics and Automation Magazine</i> , 2005 , 12, 50-58	3.4	9	
62	Estimation of Dynamic Assignment Matrices and OD Demands Using Adaptive Kalman Filtering. Journal of Intelligent Transportation Systems, 2001, 6, 281-300		9	
61	Combined multinomial logit modal split and paired combinatorial logit traffic assignment model. <i>Transportmetrica A: Transport Science</i> , 2018 , 14, 737-760	2.5	8	
60	Optimal Heterogeneous Sensor Deployment Strategy for Dynamic OriginDestination Demand Estimation. <i>Transportation Research Record</i> , 2016 , 2567, 18-27	1.7	8	
59	Integrated Framework and Assessment of On-Demand Air Service in Multimodal Context. <i>Journal of Aircraft</i> , 2014 , 51, 402-411	1.6	7	
58	Infrastructure Planning, Design, and Management for Big Events. <i>Journal of Infrastructure Systems</i> , 2009 , 15, 1-2	2.9	7	
57	Paradigms to Deploy a Behavior-Consistent Approach for Information-Based Real-Time Traffic Routing. <i>Networks and Spatial Economics</i> , 2009 , 9, 217-241	1.9	7	
56	Stochastic quasi-gradient algorithm for the off-line stochastic dynamic traffic assignment problem. <i>Transportation Research Part B: Methodological</i> , 2006 , 40, 179-206	7.2	7	

55	Evaluation of Mobility Impacts of Advanced Information Systems. <i>Journal of Transportation Engineering</i> , 2000 , 126, 212-220		7
54	. Networks and Spatial Economics, 2002 , 2, 269-294	1.9	7
53	Design of a Multiperiod Tradable Credit Scheme under Vehicular Emissions Caps and Traveler Heterogeneity in Future Credit Price Perception. <i>Journal of Infrastructure Systems</i> , 2020 , 26, 04020030	2.9	6
52	Efficient Data Collection and Accurate Travel Time Estimation in a Connected Vehicle Environment Via Real-Time Compressive Sensing. <i>Journal of Big Data Analytics in Transportation</i> , 2019 , 1, 95-107	1.7	6
51	Cost scaling based successive approximation algorithm for the traffic assignment problem. <i>Transportation Research Part B: Methodological</i> , 2014 , 68, 17-30	7.2	6
50	Experimental analysis of a hybrid route choice model to capture dynamic behavioral phenomena under advanced information systems. <i>KSCE Journal of Civil Engineering</i> , 2011 , 15, 175-185	1.9	6
49	Slope-Based Multipath Flow Update Algorithm for Static User Equilibrium Traffic Assignment Problem. <i>Transportation Research Record</i> , 2010 , 2196, 1-10	1.7	6
48	Impacts of information from various sources on the evacuation decision-making process during no-notice evacuations in campus environment. <i>Journal of Transportation Safety and Security</i> , 2020 , 12, 892-923	1.7	6
47	Long Short-Term Memory-Based Human-Driven Vehicle Longitudinal Trajectory Prediction in a Connected and Autonomous Vehicle Environment. <i>Transportation Research Record</i> , 2021 , 2675, 380-390) ^{1.7}	6
46	Analyzing the Potential for High-speed Rail as Part of the Multimodal Transportation System in the United States' Midwest Corridor. <i>International Journal of Transportation Science and Technology</i> , 2014 , 3, 129-148	3.3	5
45	Model and a Solution Algorithm for the Dynamic Resource Allocation Problem for Large-scale Transportation Network Evacuation. <i>Transportation Research Procedia</i> , 2015 , 7, 441-458	2.4	5
44	Strategies to Enhance the Performance of Path-Based Static Traffic Assignment Algorithms. <i>Computer-Aided Civil and Infrastructure Engineering</i> , 2014 , 29, 330-341	8.4	5
43	A Distributed Computing Environment for Dynamic Traffic Operations. <i>Computer-Aided Civil and Infrastructure Engineering</i> , 1999 , 14, 239-253	8.4	5
42	Limitations of Simultaneous Gap-Out Logic		5
41	Analytical model for information flow propagation wave under an information relay control strategy in a congested vehicle-to-vehicle communication environment. <i>Transportation Research Procedia</i> , 2017 , 23, 738-757	2.4	4
40	Evaluating the Effects of Switching Period of Communication Topologies and Delays on Electric Connected Vehicles Stream With Car-Following Theory. <i>IEEE Transactions on Intelligent Transportation Systems</i> , 2020 , 1-11	6.1	4
39	Internal Curing for Concrete Bridge Decks: Integration of a Social Cost Analysis in Evaluation of Long-Term Benefit. <i>Transportation Research Record</i> , 2016 , 2577, 25-34	1.7	4
38	Impacts of Pokfinon GO on route and mode choice decisions: exploring the potential for integrating augmented reality, gamification, and social components in mobile apps to influence travel decisions. <i>Transportation</i> , 2021 , 1-50	4	4

Review of Learning-Based Longitudinal Motion Planning for Autonomous Vehicles: Research Gaps Between Self-Driving and Traffic Congestion. <i>Transportation Research Record</i> ,036119812110357	1.7	4
Safety and health perceptions of location-based augmented reality gaming app and their implications. <i>Accident Analysis and Prevention</i> , 2021 , 161, 106354	6.1	4
Network Design Model to Integrate Shelter Assignment with Contraflow Operations in Emergency Evacuation Planning. <i>Networks and Spatial Economics</i> , 2018 , 18, 1027-1050	1.9	3
Modeling of the dynamic flow propagation of multiple units of information under vehicle-to-vehicle communications based advanced traveler information systems. <i>Journal of Intelligent Transportation Systems: Technology, Planning, and Operations</i> , 2017 , 21, 310-323	3.2	3
An analytical model to characterize the spatiotemporal propagation of information under vehicle-to-vehicle communications 2014 ,		3
Role of Psychological Effects of Real-Time Travel Information Provision on En Route Traveler Route Choice Decisions 2017 ,		3
Dynamic Model for System-Level Strategic Intermodal Facility Investment Planning. <i>Transportation Research Record</i> , 2016 , 2548, 24-34	1.7	3
A Generalized Flow Splitting Model for Day-to-day Traffic Assignment. <i>Transportation Research Procedia</i> , 2015 , 9, 56-70	2.4	2
Modeling Large Scale and Complex Infrastructure Systems as Computable Games 2007, 53-75		2
Limitations of Simultaneous Gap-Out Logic. <i>Transportation Research Record</i> , 2006 , 1978, 42-48	1.7	2
Continuous Learning Framework for Freeway Incident Detection. <i>Transportation Research Record</i> , 1998 , 1644, 124-131	1.7	2
Evaluating the impacts of situational awareness and mental stress on takeover performance under conditional automation. <i>Transportation Research Part F: Traffic Psychology and Behaviour</i> , 2021 , 83, 210-	2 1 25	2
Paving the way for autonomous Vehicles: Understanding autonomous vehicle adoption and vehicle fuel choice under user heterogeneity. <i>Transportation Research, Part A: Policy and Practice</i> , 2021 , 154, 364-398	3.7	2
A Car-Following Model for Connected and Automated Vehicles With Heterogeneous Time Delays Under Fixed and Switching Communication Topologies. <i>IEEE Transactions on Intelligent Transportation Systems</i> , 2021 , 1-13	6.1	2
Emergency Earthquake Routes; Part I, Criteria for Selection of Primary Routes; and Part II: Route Seismic Vulnerability Aspects		2
Highlighting the Driver® Responsibilities When Using Conditional Driving Automation: Effects on Take-over Performance and Monitoring. <i>Proceedings of the Human Factors and Ergonomics Society</i> , 2020 , 64, 1996-1996	0.4	2
Hybrid route choice model incorporating latent cognitive effects of real-time travel information using physiological data. <i>Transportation Research Part F: Traffic Psychology and Behaviour</i> , 2021 , 81, 223-	- 2 359	2
Cooperative signal-free intersection control using virtual platooning and traffic flow regulation. Transportation Research Part C: Emerging Technologies, 2022, 138, 103610	8.4	2
	Between Self-Driving and Traffic Congestion. <i>Transportation Research Record</i> , 036119812110357 Safety and health perceptions of location-based augmented reality gaming app and their implications. <i>Accident Analysis and Prevention</i> , 2021, 161, 106354 Network Design Model to Integrate Shelter Assignment with Contraflow Operations in Emergency Evacuation Planning. <i>Networks and Spatial Economics</i> , 2018, 18, 1027-1050 Modeling of the dynamic flow propagation of multiple units of information under vehicle-to-vehicle communications based advanced traveler information systems. <i>Journal of Intelligent Transportation Systems: Technology, Planning, and Operations</i> , 2017, 21, 310-323 An analytical model to characterize the spatiotemporal propagation of information under vehicle-to-vehicle communications 2014, Role of Psychological Effects of Real-Time Travel Information Provision on En Route Traveler Route Choice Decisions 2017. Dynamic Model for System-Level Strategic Intermodal Facility Investment Planning. <i>Transportation Research Record</i> , 2016, 2548, 24-34 A Generalized Flow Splitting Model for Day-to-day Traffic Assignment. <i>Transportation Research Procedia</i> , 2015, 9, 56-70 Modeling Large Scale and Complex Infrastructure Systems as Computable Games 2007, 53-75 Limitations of Simultaneous Gap-Out Logic. <i>Transportation Research Record</i> , 2006, 1978, 42-48 Continuous Learning Framework for Freeway Incident Detection. <i>Transportation Research Record</i> , 1998, 1644, 124-131 Evaluating the impacts of situational awareness and mental stress on takeover performance under conditional automation. <i>Transportation Research Part F: Traffic Psychology and Behaviour</i> , 2021, 83, 210-Paving the way for autonomous Vehicles: Understanding autonomous vehicle adoption and vehicle fuel choice under user heterogeneity. <i>Transportation Research, Part A: Policy and Practice</i> , 2021, 154, 364-398 A Car-Following Model for Connected and Automated Vehicles With Heterogeneous Time Delays Under Fixed and Switching Communication Topologie	Safety and health perceptions of location-based augmented reality gaming app and their implications. Accident Analysis and Prevention, 2021, 161, 106534 Network Design Model to Integrate Shelter Assignment with Contraflow Operations in Emergency Evacuation Planning. Networks and Spatial Economics, 2018, 18, 1027-1050 Modeling of the dynamic flow propagation of multiple units of information under vehicle-to-vehicle communications based advanced traveler information systems. Journal of Intelligent Transportation Systems. Technology, Planning, and Operations, 2017, 21, 310-323 An analytical model to characterize the spatiotemporal propagation of information under vehicle-to-vehicle communications 2014. Role of Psychological Effects of Real-Time Travel Information Provision on En Route Traveler Route Choice Decisions 2017. Dynamic Model for System-Level Strategic Intermodal Facility Investment Planning. Transportation Research Record, 2016, 2548, 24-34 A Generalized Flow Splitting Model for Day-to-day Traffic Assignment. Transportation Research Proceedia, 2015, 9, 56-70 Modeling Large Scale and Complex Infrastructure Systems as Computable Games 2007, 53-75 Limitations of Simultaneous Gap-Out Logic. Transportation Research Record, 2006, 1978, 42-48 1.7 Continuous Learning Framework for Freeway Incident Detection. Transportation Research Record, 1998, 1644, 124-131 Evaluating the impacts of situational awareness and mental stress on takeover performance under conditional automation. Transportation Research Part F: Traffic Psychology and Behaviour, 2021, 83, 210-225 Paving the way for autonomous Vehicles: Understanding autonomous vehicle adoption and vehicle fuel choice under user heterogeneity. Transportation Research, Part A: Policy and Practice, 2021, 154, 364-398 A Car-Following Model for Connected and Automated Vehicles With Heterogeneous Time Delays Under Fixed and Switching Communication Topologies. IEEE Transactions on Intelligent Transportation Systems, 2021, 1-113 Emergency Earthquake Routes; P

19	Long-term User and Community Impacts of High-speed Rail in the United States Midwest Corridor. <i>International Journal of Transportation Science and Technology</i> , 2014 , 3, 193-210	3.3	1
18	A Quantitative and Systematic Methodology to Investigate Energy Consumption Issues in Multimodal Intercity Transportation Systems. <i>International Journal of Transportation Science and Technology</i> , 2015 , 4, 229-256	3.3	1
17	Macroscopic Modeling of Spatiotemporal Information Flow Propagation Wave under Vehicle-to-Vehicle Communications 2015 ,		1
16	Optimal advance detector location for green termination systems on high-speed isolated rural intersections. <i>Transportation Research Part B: Methodological</i> , 2012 , 46, 1404-1418	7.2	1
15	A Hybrid Deployable Dynamic Traffic Assignment Framework for Robust Online Route Guidance. <i>Networks and Spatial Economics</i> , 2002 , 2, 269-294	1.9	1
14	Evaluating the impacts of driver pre-warning cognitive state on takeover performance under conditional automation. <i>Transportation Research Part F: Traffic Psychology and Behaviour</i> , 2021 , 83, 80-9	8 ^{1.5}	1
13	Low-level Controllers Play a Decisive Role in the String Stability of Adaptive Cruise Control 2021,		1
12	Proactive Longitudinal Control of Connected and Autonomous Vehicles with Lane-Change Assistance for Human-Driven Vehicles 2021 ,		1
11	Feedback perimeter control with online estimation of maximum throughput for an incident-affected road network. <i>Journal of Intelligent Transportation Systems: Technology, Planning, and Operations,</i> 2020 , 1-19	3.2	1
10	Online calibration of an integrated framework for information-based evacuation operations. Journal of Advanced Transportation, 2016 , 50, 1531-1553	1.9	1
9	Proactive Longitudinal Control to Manage Disruptive Lane Changes of Human-Driven Vehicles in Mixed-Flow Traffic. <i>IFAC-PapersOnLine</i> , 2021 , 54, 321-326	0.7	1
8	Traffic Equilibrium and Charging Facility Locations for Electric Vehicles 2017 , 17, 435		O
7	Incentive-based decentralized routing for connected and autonomous vehicles using information propagation. <i>Transportation Research Part B: Methodological</i> , 2021 , 149, 138-161	7.2	О
6	Significance of low-level control to string stability under adaptive cruise control: Algorithms, theory and experiments. <i>Transportation Research Part C: Emerging Technologies</i> , 2022 , 140, 103697	8.4	O
5	Robust control strategy for platoon of connected and autonomous vehicles considering falsified information injected through communication links. <i>Journal of Intelligent Transportation Systems: Technology, Planning, and Operations</i> ,1-17	3.2	O
4	Design of income-equitable toll prices for high occupancy toll lanes in a single toll facility. <i>Transportation Planning and Technology</i> , 2016 , 39, 389-406	1.6	
3	System optimum dynamic traffic assignment with departure time choice on two-terminal networks. <i>Transportmetrica A: Transport Science</i> , 2019 , 15, 1734-1761	2.5	
2	On-Line Control Architecture for Enabling Real-Time Traffic System Operations. <i>Computer-Aided Civil and Infrastructure Engineering</i> , 2004 , 19, 306-323	8.4	

Incorporating Driver Relaxation into Factory Adaptive Cruise Control to Reduce Lane-Change Disruptions. *Transportation Research Record*,036119812210855

1.7