
Digby F Warner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4380965/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Functional Characterization of a Vitamin B ₁₂ -Dependent Methylmalonyl Pathway in <i>Mycobacterium tuberculosis</i> : Implications for Propionate Metabolism during Growth on Fatty Acids. Journal of Bacteriology, 2008, 190, 3886-3895.	1.0	214
2	Tuberculosis Chemotherapy: the Influence of Bacillary Stress and Damage Response Pathways on Drug Efficacy. Clinical Microbiology Reviews, 2006, 19, 558-570.	5.7	129
3	Mutation rate and the emergence of drug resistance in Mycobacterium tuberculosis. Journal of Antimicrobial Chemotherapy, 2014, 69, 292-302.	1.3	123
4	Essential roles for <i>imuA</i> ′- and <i>imuB</i> -encoded accessory factors in DnaE2-dependent mutagenesis in <i>Mycobacterium tuberculosis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 13093-13098.	3.3	113
5	The impact of drug resistance on <i>Mycobacterium tuberculosis</i> physiology: what can we learn from rifampicin?. Emerging Microbes and Infections, 2014, 3, 1-11.	3.0	100
6	Mycobacterium tuberculosis Metabolism. Cold Spring Harbor Perspectives in Medicine, 2015, 5, a021121-a021121.	2.9	91
7	The Complex Mechanism of Antimycobacterial Action of 5-Fluorouracil. Chemistry and Biology, 2015, 22, 63-75.	6.2	90
8	A vitamin B ₁₂ transporter in <i>Mycobacterium tuberculosis</i> . Open Biology, 2013, 3, 120175.	1.5	83
9	The Inosine Monophosphate Dehydrogenase, GuaB2, Is a Vulnerable New Bactericidal Drug Target for Tuberculosis. ACS Infectious Diseases, 2017, 3, 5-17.	1.8	83
10	A Riboswitch Regulates Expression of the Coenzyme B 12 -Independent Methionine Synthase in Mycobacterium tuberculosis : Implications for Differential Methionine Synthase Function in Strains H37Rv and CDC1551. Journal of Bacteriology, 2007, 189, 3655-3659.	1.0	76
11	Pyrrolo[3,4- <i>c</i>]pyridine-1,3(2 <i>H</i>)-diones: A Novel Antimycobacterial Class Targeting Mycobacterial Respiration. Journal of Medicinal Chemistry, 2015, 58, 9371-9381.	2.9	74
12	Ribonucleotide Reduction in Mycobacterium tuberculosis : Function and Expression of Genes Encoding Class Ib and Class II Ribonucleotide Reductases. Infection and Immunity, 2003, 71, 6124-6131.	1.0	65
13	Diversity and disease pathogenesis in Mycobacterium tuberculosis. Trends in Microbiology, 2015, 23, 14-21.	3.5	64
14	The survival kit of Mycobacterium tuberculosis. Nature Medicine, 2007, 13, 282-284.	15.2	62
15	Role of the DinB Homologs Rv1537 and Rv3056 in <i>Mycobacterium tuberculosis</i> . Journal of Bacteriology, 2010, 192, 2220-2227.	1.0	61
16	Vitamin B ₁₂ metabolism in <i>Mycobacterium tuberculosis</i> . Future Microbiology, 2013, 8, 1405-1418.	1.0	58
17	Detection of Mycobacterium tuberculosis bacilli in bio-aerosols from untreated TB patients. Gates Open Research, 2017, 1, 11.	2.0	58
18	Shortening Treatment for Tuberculosis — Back to Basics. New England Journal of Medicine, 2014, 371, 1642-1643.	13.9	57

#	Article	IF	CITATIONS
19	Synthesis and biological evaluation of 2-aminothiazole derivatives as antimycobacterial and antiplasmodial agents. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 560-564.	1.0	56
20	Detection of Mycobacterium tuberculosis bacilli in bio-aerosols from untreated TB patients. Gates Open Research, 2017, 1, 11.	2.0	54
21	Arrayed CRISPRi and quantitative imaging describe the morphotypic landscape of essential mycobacterial genes. ELife, 2020, 9, .	2.8	50
22	Susceptibility of Mycobacterium tuberculosis Cytochrome <i>bd</i> Oxidase Mutants to Compounds Targeting the Terminal Respiratory Oxidase, Cytochrome <i>c</i> . Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	49
23	2-Mercapto-Quinazolinones as Inhibitors of Type II NADH Dehydrogenase and <i>Mycobacterium tuberculosis</i> : Structure–Activity Relationships, Mechanism of Action and Absorption, Distribution, Metabolism, and Excretion Characterization. ACS Infectious Diseases, 2018, 4, 954-969.	1.8	49
24	Function and Regulation of Class I Ribonucleotide Reductase-Encoding Genes in Mycobacteria. Journal of Bacteriology, 2009, 191, 985-995.	1.0	48
25	Synthesis, Characterization, and Pharmacological Evaluation of Silicon-Containing Aminoquinoline Organometallic Complexes As Antiplasmodial, Antitumor, and Antimycobacterial Agents. Organometallics, 2013, 32, 141-150.	1.1	48
26	Antimicrobial activity of organometallic isonicotinyl and pyrazinyl ferrocenyl-derived complexes. Dalton Transactions, 2017, 46, 9875-9885.	1.6	48
27	Synthesis and Antiplasmodial and Antimycobacterial Evaluation of New Nitroimidazole and Nitroimidazooxazine Derivatives. ACS Medicinal Chemistry Letters, 2013, 4, 128-131.	1.3	47
28	Targeting DNA Replication and Repair for the Development of Novel Therapeutics against Tuberculosis. Frontiers in Molecular Biosciences, 2017, 4, 75.	1.6	42
29	Aminopyrazolo[1,5-a]pyrimidines as potential inhibitors of Mycobacterium tuberculosis: Structure activity relationships and ADME characterization. Bioorganic and Medicinal Chemistry, 2015, 23, 7240-7250.	1.4	41
30	Real-Time Investigation of Tuberculosis Transmission: Developing the Respiratory Aerosol Sampling Chamber (RASC). PLoS ONE, 2016, 11, e0146658.	1.1	40
31	Bioluminescent Reporters for Rapid Mechanism of Action Assessment in Tuberculosis Drug Discovery. Antimicrobial Agents and Chemotherapy, 2016, 60, 6748-6757.	1.4	38
32	Detection and treatment of subclinical tuberculosis. Tuberculosis, 2012, 92, 447-452.	0.8	33
33	Synthesis of new verapamil analogues and their evaluation in combination with rifampicin against Mycobacterium tuberculosis and molecular docking studies in the binding site of efflux protein Rv1258c. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 2985-2990.	1.0	31
34	Nucleotide Metabolism and DNA Replication. Microbiology Spectrum, 2014, 2, .	1.2	31
35	Accessible and distinct decoquinate derivatives active against Mycobacterium tuberculosis and apicomplexan parasites. Communications Chemistry, 2018, 1, .	2.0	30
36	Capture and visualization of live Mycobacterium tuberculosis bacilli from tuberculosis patient bioaerosols. PLoS Pathogens, 2021, 17, e1009262.	2.1	30

#	Article	IF	CITATIONS
37	Aerosolization of <i>Mycobacterium tuberculosis</i> by Tidal Breathing. American Journal of Respiratory and Critical Care Medicine, 2022, 206, 206-216.	2.5	30
38	DNA Replication in <i>Mycobacterium tuberculosis</i> . Microbiology Spectrum, 2017, 5, .	1.2	29
39	The Influence of HIV on the Evolution of Mycobacterium tuberculosis. Molecular Biology and Evolution, 2017, 34, 1654-1668.	3.5	27
40	Drug permeation and metabolism in <i>Mycobacterium tuberculosis</i> : Prioritising local exposure as essential criterion in new TB drug development. IUBMB Life, 2018, 70, 926-937.	1.5	27
41	Complex genetics of drug resistance in Mycobacterium tuberculosis. Nature Genetics, 2013, 45, 1107-1108.	9.4	26
42	Co(II) and Cu(II) pyrophosphate complexes have selectivity and potency against Mycobacteria including Mycobacterium tuberculosis. European Journal of Medicinal Chemistry, 2013, 70, 589-593.	2.6	26
43	Detection, survival and infectious potential of <i>Mycobacterium tuberculosis</i> inÂthe environment: a review of the evidence and epidemiological implications. European Respiratory Journal, 2019, 53, 1802302.	3.1	26
44	Versatility of 7-Substituted Coumarin Molecules as Antimycobacterial Agents, Neuronal Enzyme Inhibitors and Neuroprotective Agents. Molecules, 2017, 22, 1644.	1.7	23
45	Novel Antitubercular 6-Dialkylaminopyrimidine Carboxamides from Phenotypic Whole-Cell High Throughput Screening of a SoftFocus Library: Structure–Activity Relationship and Target Identification Studies. Journal of Medicinal Chemistry, 2017, 60, 10118-10134.	2.9	22
46	Identification of aminopyrimidineâ€sulfonamides as potent modulators of Wag31â€mediated cell elongation in mycobacteria. Molecular Microbiology, 2017, 103, 13-25.	1.2	22
47	Semisynthetic Antimycobacterial C-3 Silicate and C-3/C-21 Ester Derivatives of Fusidic Acid: Pharmacological Evaluation and Stability Studies in Liver Microsomes, Rat Plasma, and <i>Mycobacterium tuberculosis</i> culture. ACS Infectious Diseases, 2019, 5, 1634-1644.	1.8	22
48	Antimicrobial evaluation of neutral and cationic iridium(III) and rhodium(III) aminoquinoline-benzimidazole hybrid complexes. European Journal of Medicinal Chemistry, 2020, 206, 112694.	2.6	21
49	Synthesis and antimycobacterial activity of disubstituted benzyltriazoles. Medicinal Chemistry Research, 2019, 28, 2279-2293.	1.1	20
50	Quinolone-isoniazid hybrids: synthesis and preliminary <i>in vitro</i> cytotoxicity and anti-tuberculosis evaluation. MedChemComm, 2019, 10, 326-331.	3.5	20
51	<i>Mycobacterium tuberculosis</i> Metabolism. Microbiology Spectrum, 2019, 7, .	1.2	19
52	Azaaurones as Potent Antimycobacterial Agents Active against MDR―and XDRâ€TB. ChemMedChem, 2019, 14, 1537-1546.	1.6	19
53	Bioisosteric ferrocenyl aminoquinoline-benzimidazole hybrids: Antimicrobial evaluation and mechanistic insights. European Journal of Medicinal Chemistry, 2019, 180, 121-133.	2.6	19
54	DNA Metabolism in Mycobacterial Pathogenesis. Current Topics in Microbiology and Immunology, 2013, 374, 27-51.	0.7	18

#	Article	IF	CITATIONS
55	Design, Synthesis, and Evaluation of Novel Hybrid Efflux Pump Inhibitors for Use against <i>Mycobacterium tuberculosis</i> . ACS Infectious Diseases, 2016, 2, 714-725.	1.8	18
56	Cough-independent production of viable Mycobacterium tuberculosis in bioaerosol. Tuberculosis, 2021, 126, 102038.	0.8	18
57	Genome-Wide Transposon Mutagenesis in Mycobacterium tuberculosis and Mycobacterium smegmatis. Methods in Molecular Biology, 2017, 1498, 321-335.	0.4	17
58	Cinnamoyl-Oxaborole Amides: Synthesis and Their in Vitro Biological Activity. Molecules, 2018, 23, 2038.	1.7	17
59	Targeted Gene Knockout and Essentiality Testing by Homologous Recombination. Methods in Molecular Biology, 2015, 1285, 131-149.	0.4	17
60	IS1096-mediated DNA rearrangements play a key role in genome evolution of Mycobacterium smegmatis. Tuberculosis, 2008, 88, 399-409.	0.8	16
61	Synthesis and synergistic antimycobacterial screening of chlorpromazine and its metabolites. MedChemComm, 2014, 5, 502-506.	3.5	16
62	Pharmacologically active metabolites, combination screening and target identification-driven drug repositioning in antituberculosis drug discovery. Bioorganic and Medicinal Chemistry, 2014, 22, 4453-4461.	1.4	16
63	Proteomic comparison of three clinical diarrhoeagenic drug-resistant Escherichia coli isolates grown on CHROMagarâ,,¢STEC media. Journal of Proteomics, 2018, 180, 25-35.	1.2	16
64	Developing Synergistic Drug Combinations To Restore Antibiotic Sensitivity in Drug-Resistant Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2021, 65, .	1.4	16
65	Harnessing Biological Insight to Accelerate Tuberculosis Drug Discovery. Accounts of Chemical Research, 2019, 52, 2340-2348.	7.6	15
66	New Quinolone-Based Thiosemicarbazones Showing Activity Against Plasmodium falciparum and Mycobacterium tuberculosis. Molecules, 2019, 24, 1740.	1.7	15
67	Design, synthesis, and antimycobacterial activity of novel ciprofloxacin derivatives. Chemical Biology and Drug Design, 2019, 94, 1518-1536.	1.5	15
68	A derivative of Mycobacterium smegmatis mc2155 that lacks the duplicated chromosomal region. Tuberculosis, 2006, 86, 438-444.	0.8	14
69	Single-step synthesis and in vitro anti-mycobacterial activity of novel nitrofurantoin analogues. Bioorganic Chemistry, 2020, 96, 103587.	2.0	14
70	The role of DNA repair in M. tuberculosis pathogenesis. Drug Discovery Today Disease Mechanisms, 2010, 7, e5-e11.	0.8	13
71	Death of <i>Mycobacterium tuberculosis</i> by <scp>l</scp> -arginine starvation. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9658-9660.	3.3	12
72	Synthesis and biological evaluation of 2-chloro-3-[(thiazol-2-yl)amino]-1,4-naphthoquinones. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 1572-1575.	1.0	12

#	Article	IF	CITATIONS
73	Synthesis and in vitro antimycobacterial and antileishmanial activities of hydroquinone-triazole hybrids. Medicinal Chemistry Research, 2020, 29, 1387-1399.	1.1	12
74	Mono- and polynuclear ferrocenylthiosemicarbazones: Synthesis, characterisation and antimicrobial evaluation. Journal of Organometallic Chemistry, 2016, 819, 166-172.	0.8	11
75	Synthesis, characterization and antimicrobial evaluation of mono- and polynuclear ferrocenyl-derived amino and imino complexes. Journal of Organometallic Chemistry, 2016, 809, 79-85.	0.8	11
76	DNA Replication Fidelity in the Mycobacterium tuberculosis Complex. Advances in Experimental Medicine and Biology, 2017, 1019, 247-262.	0.8	11
77	Novel South African Rare Actinomycete Kribbella speibonae Strain SK5: A Prolific Producer of Hydroxamate Siderophores Including New Dehydroxylated Congeners. Molecules, 2020, 25, 2979.	1.7	11
78	Synthesis and comparison of in vitro dual anti-infective activities of novel naphthoquinone hybrids and atovaquone. Bioorganic Chemistry, 2021, 114, 105118.	2.0	11
79	Flow cytometry method for absolute counting and single-cell phenotyping of mycobacteria. Scientific Reports, 2021, 11, 18661.	1.6	11
80	DNA-Dependent Binding of Nargenicin to DnaE1 Inhibits Replication in <i>Mycobacterium tuberculosis</i> . ACS Infectious Diseases, 2022, 8, 612-625.	1.8	11
81	New Quinoline–Urea–Benzothiazole Hybrids as Promising Antitubercular Agents: Synthesis, In Vitro Antitubercular Activity, Cytotoxicity Studies, and In Silico ADME Profiling. Pharmaceuticals, 2022, 15, 576.	1.7	11
82	Bioaerosol sampling of patients with suspected pulmonary tuberculosis: a study protocol. BMC Infectious Diseases, 2020, 20, 587.	1.3	10
83	Sensitivity optimisation of tuberculosis bioaerosol sampling. PLoS ONE, 2020, 15, e0238193.	1.1	10
84	Benzoheterocyclic Oxime Carbamates Active against <i>Mycobacterium tuberculosis</i> : Synthesis, Structure–Activity Relationship, Metabolism, and Biology Triaging. Journal of Medicinal Chemistry, 2021, 64, 9444-9457.	2.9	10
85	Molecular Detection of Airborne <i>Mycobacterium tuberculosis</i> in South African High Schools. American Journal of Respiratory and Critical Care Medicine, 2022, 205, 350-356.	2.5	10
86	Beyond the lab: Eh!woza and knowing tuberculosis. Medical Humanities, 2018, 44, 285-292.	0.6	9
87	Addressing Latent Tuberculosis: New Advances in Mimicking the Disease, Discovering Key Targets, and Designing Hit Compounds. International Journal of Molecular Sciences, 2020, 21, 8854.	1.8	9
88	Mycobacterial genetics in target validation. Drug Discovery Today: Technologies, 2004, 1, 93-98.	4.0	8
89	Antimycobacterial, Cytotoxic, and Antioxidant Activities of Abietane Diterpenoids Isolated from Plectranthus madagascariensis. Plants, 2021, 10, 175.	1.6	8
90	Easily accessed nitroquinolones exhibiting potent and selective anti-tubercular activity. European Journal of Medicinal Chemistry, 2021, 213, 113207.	2.6	8

#	Article	IF	CITATIONS
91	Synthesis and antimicrobial study of organoiridium amido-sulfadoxine complexes. Inorganica Chimica Acta, 2021, 517, 120175.	1.2	8
92	Making ends meet in mycobacteria. Molecular Microbiology, 2011, 79, 283-287.	1.2	7
93	Easy-To-Access Quinolone Derivatives Exhibiting Antibacterial and Anti-Parasitic Activities. Molecules, 2021, 26, 1141.	1.7	7
94	Biological Profiling Enables Rapid Mechanistic Classification of Phenotypic Screening Hits and Identification of KatG Activation-Dependent Pyridine Carboxamide Prodrugs With Activity Against Mycobacterium tuberculosis. Frontiers in Cellular and Infection Microbiology, 2020, 10, 582416.	1.8	6
95	Intracellular Accumulation of Novel and Clinically Used TB Drugs Potentiates Intracellular Synergy. Microbiology Spectrum, 2021, 9, e0043421.	1.2	6
96	A Pseudokinase Debut at the Mycobacterial Cell Wall. Science Signaling, 2012, 5, pe3.	1.6	5
97	<i>De Novo</i> Cobalamin Biosynthesis, Transport, and Assimilation and Cobalamin-Mediated Regulation of Methionine Biosynthesis in Mycobacterium smegmatis. Journal of Bacteriology, 2021, 203, .	1.0	5
98	Estimating Tuberculosis Transmission Risks in a Primary Care Clinic in South Africa: Modeling of Environmental and Clinical Data. Journal of Infectious Diseases, 2022, 225, 1642-1652.	1.9	5
99	Serial measurement of M. tuberculosis in blood from critically-ill patients with HIV-associated tuberculosis. EBioMedicine, 2022, 78, 103949.	2.7	5
100	Synthesis and biological evaluation of (E)-cinnamic acid, (E)-2-styrylthiazole and (E)-2-[2-(naphthalen-1-yl)vinyl]thiazole derivatives. Arkivoc, 2017, 2016, 284-296.	0.3	4
101	<i>In Vitro</i> Efficacies, ADME, and Pharmacokinetic Properties of Phenoxazine Derivatives Active against Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	4
102	Expanding the anti-TB arsenal. Science, 2019, 363, 457-458.	6.0	4
103	Novel approach to estimate tuberculosis transmission in primary care clinics in sub-Saharan Africa: protocol of a prospective study. BMJ Open, 2020, 10, e036214.	0.8	4
104	Imaging Africa: a strategic approach to optical microscopy training in Africa. Nature Methods, 2021, 18, 847-855.	9.0	4
105	Cell Wall Proteomics Reveal Phenotypic Adaption of Drug-Resistant Mycobacterium smegmatis to Subinhibitory Rifampicin Exposure. Frontiers in Medicine, 2021, 8, 723667.	1.2	4
106	Approaches to target identification and validation for tuberculosis drug discovery: a UCT perspective. South African Medical Journal, 2012, 102, 457.	0.2	3
107	Synthesis and biological evaluation of bis-N2,N2′-(4-hydroxycoumarin-3-yl)ethylidene]-2,3-dihydroxysuccinodihydrazides. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 126911.	1.0	3
108	6â€Nitroâ€lâ€benzylquinolones exhibiting specific antitubercular activity. Chemical Biology and Drug Design, 2020, 96, 1387-1394.	1.5	3

#	Article	IF	CITATIONS
109	Isolation and characterization of new phenolic siderophores with antimicrobial properties from <i>Pseudomonas</i> sp. UIAU-6B. Beilstein Journal of Organic Chemistry, 2021, 17, 2390-2398.	1.3	3
110	Non-volatile organic compounds in exhaled breath particles correspond to active tuberculosis. Scientific Reports, 2022, 12, 7919.	1.6	3
111	Investigation of quinoloneâ€ŧethered aminoguanidine as novel antibacterial agents. Archiv Der Pharmazie, 0, , .	2.1	3
112	Translating genomics research into control of tuberculosis: lessons learned and future prospects. Genome Biology, 2014, 15, 514.	3.8	2
113	Editorial overview: Tuberculosis, malaria and schistosomiasis; understanding resistance and development of new drugs. Current Opinion in Pharmacology, 2018, 42, iv-vi.	1.7	2
114	A novel inducible mutagenesis system in Mycobacterium tuberculosis. FASEB Journal, 2012, 26, 222.1.	0.2	2
115	Identification of Antimycobacterial Natural Products from a Library of Marine Invertebrate Extracts. Medicines (Basel, Switzerland), 2022, 9, 9.	0.7	2
116	Exploration of 4-aminopyrrolo[2,3-d]pyrimidine as antitubercular agents. Molecular Diversity, 2023, 27, 753-765.	2.1	2
117	Defining a diagnostic gene signature for tuberculosis. Lancet Respiratory Medicine, the, 2016, 4, 170-171.	5.2	1
118	DNA Replication in Mycobacterium tuberculosis. , 2017, , 581-606.		1
119	Arylquinolinecarboxamides: Synthesis, in vitro and in silico studies against Mycobacterium tuberculosis. Journal of Heterocyclic Chemistry, 0, , .	1.4	1
120	Nucleotide Metabolism and DNA Replication. , 0, , 633-656.		1
121	Effective Visualization of Tuberculosis Three-Drug Assays. , 2016, , .		0
122	A19â€,The impact of HIV-1 on the evolution of Mycobacterium tuberculosis. Virus Evolution, 2018, 4, .	2.2	0
123	Mycobacterium tuberculosisMetabolism. , 2019, , 1107-1128.		0
124	Synthesis and biological screening of diethyl [N-(thiazol-2-yl)carbamoyl]methylphosphonates. Arkivoc, 2019, 2018, 110-118.	0.3	0
125	Propylphosphonic acid anhydride–mediated amidation of Morita–Baylis–Hillman–derived indolizine-2-carboxylic acids. Journal of Chemical Research, 2021, 45, 674-678.	0.6	0
126	Antimycobacterial Activity, Synergism, and Mechanism of Action Evaluation of Novel Polycyclic Amines against Mycobacterium tuberculosis. Advances in Pharmacological and Pharmaceutical Sciences, 2021, 2021, 1-8.	0.7	0

#	Article	IF	CITATIONS
127	Tuberculosis Drug Discovery: Target Identification and Validation. , 2012, , 53-84.		Ο
128	Sensitivity optimisation of tuberculosis bioaerosol sampling. , 2020, 15, e0238193.		0
129	Sensitivity optimisation of tuberculosis bioaerosol sampling. , 2020, 15, e0238193.		Ο
130	Sensitivity optimisation of tuberculosis bioaerosol sampling. , 2020, 15, e0238193.		0
131	Sensitivity optimisation of tuberculosis bioaerosol sampling. , 2020, 15, e0238193.		Ο
132	Sensitivity optimisation of tuberculosis bioaerosol sampling. , 2020, 15, e0238193.		0
133	Sensitivity optimisation of tuberculosis bioaerosol sampling. , 2020, 15, e0238193.		Ο
134	Antiplasmodial and antimycobacterial activities of crude and lead-like enhanced extracts from Namibian medicinal plants. Journal of Ethnopharmacology, 2022, , 115389.	2.0	0