Pamala A Jacobson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4380772/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Exploring Potential for a Personalized Medicine Approach to Smoking Cessation With an American Indian Tribe. Nicotine and Tobacco Research, 2023, 25, 120-126.	1.4	3
2	Effects of cyclophosphamide related genetic variants on clinical outcomes of adult hematopoietic cell transplant patients. Cancer Chemotherapy and Pharmacology, 2022, 89, 543-549.	1.1	2
3	Predictive Value of Câ€Reactive Protein and Albumin for Temporal Withinâ€Individual Pharmacokinetic Variability of Voriconazole in Pediatric Patients Undergoing Hematopoietic Cell Transplantation. Journal of Clinical Pharmacology, 2022, 62, 855-862.	1.0	3
4	Donor and recipient polygenic risk scores influence the risk of post-transplant diabetes. Nature Medicine, 2022, 28, 999-1005.	15.2	15
5	Reduced Enterohepatic Recirculation of Mycophenolate and Lower Blood Concentrations Are Associated with the Stool Bacterial Microbiome after Hematopoietic Cell Transplantation. Transplantation and Cellular Therapy, 2022, 28, 372.e1-372.e9.	0.6	12
6	FC033: Genome-Wide Association Meta-Analysis Identifies Novel Loci for Kidney Failure. Nephrology Dialysis Transplantation, 2022, 37, .	0.4	0
7	Weightâ€based mycophenolate mofetil dosing predicts acute GVHD and relapse after allogeneic hematopoietic cell transplantation. European Journal of Haematology, 2021, 106, 205-212.	1.1	1
8	Precision Dosing for Tacrolimus Using Genotypes and Clinical Factors in Kidney Transplant Recipients of European Ancestry. Journal of Clinical Pharmacology, 2021, 61, 1035-1044.	1.0	3
9	Early detection of SARSâ€CoVâ€2 and other infections in solid organ transplant recipients and household members using wearable devices. Transplant International, 2021, 34, 1019-1031.	0.8	6
10	Pharmacogenomics education, researchÂand clinical implementation in the state of Minnesota. Pharmacogenomics, 2021, 22, 681-691.	0.6	11
11	CYP2C19 Phenotype and Body Weight-Guided Voriconazole Initial Dose in Infants and Children after Hematopoietic Cell Transplantation. Antimicrobial Agents and Chemotherapy, 2021, 65, e0062321.	1.4	12
12	Higher Fludarabine and Cyclophosphamide Exposures Lead to Worse Outcomes in Reduced-Intensity Conditioning Hematopoietic Cell Transplantation for Adult Hematologic Malignancy. Transplantation and Cellular Therapy, 2021, 27, 773.e1-773.e8.	0.6	3
13	A Multi-Marker Test for Analyzing Paired Genetic Data in Transplantation. Frontiers in Genetics, 2021, 12, 745773.	1.1	2
14	Development and Implementation of In-House Pharmacogenomic Testing Program at a Major Academic Health System. Frontiers in Genetics, 2021, 12, 712602.	1.1	6
15	Precision medicine, agriculture, and genome editing: science and ethics. Annals of the New York Academy of Sciences, 2020, 1465, 59-75.	1.8	1
16	Evidence That Established Lung Cancer Mortality Disparities in American Indians Are Not Due to Lung Cancer Genetic Testing and Targeted Therapy Disparities. Clinical Lung Cancer, 2020, 21, e164-e168.	1.1	3
17	Pharmacogenomics in kidney transplant recipients and potential for integration into practice. Journal of Clinical Pharmacy and Therapeutics, 2020, 45, 1457-1465.	0.7	3
18	Impact of Obesity on Voriconazole Pharmacokinetics among Pediatric Hematopoietic Cell Transplant Recipients. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	4

#	Article	IF	CITATIONS
19	Finding the Dose for Hydroxychloroquine Prophylaxis for COVIDâ€19: The Desperate Search for Effectiveness. Clinical Pharmacology and Therapeutics, 2020, 108, 766-769.	2.3	46
20	A cost-effectiveness analysis of pretreatment <i>DPYD</i> and <i>UGT1A1</i> screening in patients with metastatic colorectal cancer (mCRC) treated with FOLFIRI+bevacizumab (FOLFIRI+Bev) Journal of Clinical Oncology, 2020, 38, 168-168.	0.8	6
21	The impact of donor and recipient common clinical and genetic variation on estimated glomerular filtration rate in a European renal transplant population. American Journal of Transplantation, 2019, 19, 2262-2273.	2.6	13
22	Comparative Evaluation of Median Versus Youden Index Dichotomization Methods: Exposure–Response Analysis of Mycophenolic Acid and Acyl-Glucuronide Metabolite. European Journal of Drug Metabolism and Pharmacokinetics, 2019, 44, 629-638.	0.6	5
23	Tacrolimus troughs and genetic determinants of metabolism in kidney transplant recipients: A comparison of four ancestry groups. American Journal of Transplantation, 2019, 19, 2795-2804.	2.6	35
24	Genetic Variants Associated With Immunosuppressant Pharmacokinetics and Adverse Effects in the DeKAF Genomics Genome-wide Association Studies. Transplantation, 2019, 103, 1131-1139.	0.5	17
25	Analysis of 75 Candidate SNPs Associated With Acute Rejection in Kidney Transplant Recipients: Validation of rs2910164 in MicroRNA MIR146A. Transplantation, 2019, 103, 1591-1602.	0.5	16
26	ldentification of genetic variants associated with tacrolimus metabolism in kidney transplant recipients by extreme phenotype sampling and next generation sequencing. Pharmacogenomics Journal, 2019, 19, 375-389.	0.9	11
27	Pre-Transplant Serum Claudin-3 Predicts Intestinal Graft-Versus-Host Disease and Non-Relapse Mortality Risk after Allogeneic Hematopoietic Cell Transplantation. Blood, 2019, 134, 39-39.	0.6	Ο
28	NPHP1 (Nephrocystin-1) Gene Deletions Cause Adult-Onset ESRD. Journal of the American Society of Nephrology: JASN, 2018, 29, 1772-1779.	3.0	74
29	Attempted validation of 44 reported SNPs associated with tacrolimus troughs in a cohort of kidney allograft recipients. Pharmacogenomics, 2018, 19, 175-184.	0.6	23
30	Mycophenolic Acid and Its Metabolites in Kidney Transplant Recipients: A Semimechanistic Enterohepatic Circulation Model to Improve Estimating Exposure. Journal of Clinical Pharmacology, 2018, 58, 628-639.	1.0	24
31	Genetics of acute rejection after kidney transplantation. Transplant International, 2018, 31, 263-277.	0.8	27
32	Pharmacogenomics of Medications Commonly Used in the Intensive Care Unit. Frontiers in Pharmacology, 2018, 9, 1436.	1.6	12
33	Tacrolimus trough and dose intraâ€patient variability and CYP3A5 genotype: Effects on acute rejection and graft failure in European American and African American kidney transplant recipients. Clinical Transplantation, 2018, 32, e13424.	0.8	30
34	Urinary microbiome associated with chronic allograft dysfunction in kidney transplant recipients. Clinical Transplantation, 2018, 32, e13436.	0.8	24
35	Tacrolimus Elimination in Four Patients With a <i><scp>CYP</scp>3A5*3/*3 <scp>CYP</scp>3A4*22/*22</i> Genotype Combination. Pharmacotherapy, 2018, 38, e46-e52.	1.2	17
36	Rifampin–sirolimus–voriconazole interaction in a hematopoietic cell transplant recipient. Journal of Oncology Pharmacy Practice, 2017, 23, 75-79.	0.5	10

#	Article	IF	CITATIONS
37	CRISPR/Cas9 Genetic Modification of <i>CYP3A5 *3</i> in HuH-7 Human Hepatocyte Cell Line Leads to Cell Lines with Increased Midazolam and Tacrolimus Metabolism. Drug Metabolism and Disposition, 2017, 45, 957-965.	1.7	18
38	Influence of Kidney Transplant Status on Warfarin Dose, Anticoagulation Control, and Risk of Hemorrhage. Pharmacotherapy, 2017, 37, 1366-1373.	1.2	5
39	Concepts of Genomics in Kidney Transplantation. Current Transplantation Reports, 2017, 4, 116-123.	0.9	4
40	Pharmacokinetic–pharmacodynamic modelling of acute Nâ€ŧerminal pro Bâ€ŧype natriuretic peptide after doxorubicin infusion in breast cancer. British Journal of Clinical Pharmacology, 2016, 82, 773-783.	1.1	12
41	Personalized fludarabine dosing to reduce nonrelapse mortality in hematopoietic stem-cell transplant recipients receiving reduced intensity conditioning. Translational Research, 2016, 175, 103-115.e4.	2.2	22
42	Sirolimus and Mycophenolate Mofetil as Calcineurin Inhibitor–Free Graft-versus-Host Disease Prophylaxis for Reduced-Intensity Conditioning Umbilical Cord Blood Transplantation. Biology of Blood and Marrow Transplantation, 2016, 22, 2025-2030.	2.0	27
43	Concept and design of a genome-wide association genotyping array tailored for transplantation-specific studies. Genome Medicine, 2015, 7, 90.	3.6	49
44	Differentially Expressed Gene Transcripts Using RNA Sequencing from the Blood of Immunosuppressed Kidney Allograft Recipients. PLoS ONE, 2015, 10, e0125045.	1.1	20
45	Angiotensin Converting Enzyme Inhibitors (ACEI) and doxorubicin pharmacokinetics in women receiving adjuvant breast cancer treatment. SpringerPlus, 2015, 4, 32.	1.2	8
46	Multigene predictors of tacrolimus exposure in kidney transplant recipients. Pharmacogenomics, 2015, 16, 841-854.	0.6	31
47	Higher Dose of Mycophenolate Mofetil Reduces Acute Graft-versus-Host Disease in Reduced-Intensity Conditioning Double Umbilical Cord Blood Transplantation. Biology of Blood and Marrow Transplantation, 2015, 21, 926-933.	2.0	35
48	Telomere Length of Recipients and Living Kidney Donors and Chronic Graft Dysfunction in Kidney Transplants. Transplantation, 2014, 97, 325-329.	0.5	18
49	Population pharmacokinetics of unbound mycophenolic acid in adult allogeneic haematopoietic cell transplantation: effect of pharmacogenetic factors. British Journal of Clinical Pharmacology, 2013, 75, 463-475.	1.1	26
50	Tacrolimus trough levels after month 3 as a predictor of acute rejection following kidney transplantation: a lesson learned from DeKAF Genomics. Transplant International, 2013, 26, 982-989.	0.8	47
51	Inflammation in the setting of chronic allograft dysfunction postâ€kidney transplant: phenotype and genotype. Clinical Transplantation, 2013, 27, 348-358.	0.8	14
52	Phosphoramide Mustard As a Biomarker Of Cyclophosphamide Exposure In Adults Receiving Reduced Intensity Conditioning Hematopoietic Cell Transplantation. Blood, 2013, 122, 5461-5461.	0.6	0
53	Population Pharmacokinetics of Unbound Mycophenolic Acid in Pediatric and Young Adult Patients Undergoing Allogeneic Hematopoietic Cell Transplantation. Journal of Clinical Pharmacology, 2012, 52, 1665-1675.	1.0	22
54	Validation of tacrolimus equation to predict troughs using genetic and clinical factors. Pharmacogenomics, 2012, 13, 1141-1147.	0.6	32

#	Article	IF	CITATIONS
55	Genetic and Clinical Determinants of Early, Acute Calcineurin Inhibitor-Related Nephrotoxicity. Transplantation, 2012, 93, 624-631.	0.5	62
56	Formation of cyclophosphamide specific DNA adducts in hematological diseases. Pediatric Blood and Cancer, 2012, 58, 708-714.	0.8	24
57	Cytotoxic purine nucleoside analogues bind to A1, A2A, and A3 adenosine receptors. Naunyn-Schmiedeberg's Archives of Pharmacology, 2012, 385, 519-525.	1.4	22
58	Pharmacokinetics of Clofarabine in Patients With High-Risk Inherited Metabolic Disorders Undergoing Brain-Sparing Hematopoietic Cell Transplantation. Journal of Clinical Pharmacology, 2011, 51, 679-686.	1.0	9
59	Novel Polymorphisms Associated With Tacrolimus Trough Concentrations: Results From a Multicenter Kidney Transplant Consortium. Transplantation, 2011, 91, 300-308.	0.5	151
60	Genetic Determinants of Mycophenolate-Related Anemia and Leukopenia After Transplantation. Transplantation, 2011, 91, 309-316.	0.5	52
61	Validation of single nucleotide polymorphisms associated with acute rejection in kidney transplant recipients using a large multi-center cohort. Transplant International, 2011, 24, 1231-1238.	0.8	27
62	Dosing equation for tacrolimus using genetic variants and clinical factors. British Journal of Clinical Pharmacology, 2011, 72, 948-957.	1.1	140
63	Association Between Genetic Variants in Immune Response Genes and Outcomes After Hematopoietic Cell Transplantation. Blood, 2011, 118, 3049-3049.	0.6	Ο
64	Single-Nucleotide Polymorphisms, Acute Rejection, and Severity of Tubulitis in Kidney Transplantation, Accounting for Center-to-Center Variation. Transplantation, 2010, 90, 1401-1408.	0.5	37
65	Quantitative High-Performance Liquid Chromatographyâ^'Electrospray Ionization Tandem Mass Spectrometry Analysis of Bis- <i>N</i> 7-Guanine DNAâ^DNA Cross-Links in White Blood Cells of Cancer Patients Receiving Cyclophosphamide Therapy. Analytical Chemistry, 2010, 82, 3650-3658.	3.2	31
66	Mycophenolate Pharmacokinetics and Association with Response to Acute Graft-versus-Host Disease Treatment from the Blood and Marrow Transplant Clinical Trials Network. Biology of Blood and Marrow Transplantation, 2010, 16, 421-429.	2.0	32
67	Evaluation of mycophenolate mofetil for initial treatment of chronic graft-versus-host disease. Blood, 2009, 113, 5074-5082.	0.6	143
68	Pharmacogenetic effect of the UGT polymorphisms on mycophenolate is modified by calcineurin inhibitors. European Journal of Clinical Pharmacology, 2008, 64, 1047-1056.	0.8	43
69	Higher Mycophenolate Dose Requirements in Children Undergoing Hematopoietic Cell Transplant (HCT). Journal of Clinical Pharmacology, 2008, 48, 485-494.	1.0	19
70	Glutathione Sâ€Transferase A1 Genetic Variants Reduce Busulfan Clearance in Children Undergoing Hematopoietic Cell Transplantation. Journal of Clinical Pharmacology, 2008, 48, 1052-1062.	1.0	65
71	Comparison of Two Mycophenolate Mofetil Dosing Regimens Following Hematopoietic Cell Transplantation (HCT) Blood, 2008, 112, 1116-1116.	0.6	0
72	Fludarabine Exposure Is Associated with Increased Treatment Related Mortality after Nonmyeloablative Hematopoietic Cell Transplantation (HCT). Blood, 2008, 112, 795-795.	0.6	0

#	Article	IF	CITATIONS
73	Prediction of Unbound Mycophenolic Acid Concentrations in Patients After Hematopoietic Cell Transplantation. Therapeutic Drug Monitoring, 2007, 29, 385-390.	1.0	10
74	Highly Variable Mycophenolate Mofetil Bioavailability Following Nonmyeloablative Hematopoietic Cell Transplantation. Journal of Clinical Pharmacology, 2007, 47, 6-12.	1.0	29
75	Pharmacogenetics of Mycophenolate Mofetil in Patients Undergoing Hematopoietic Cell Transplantation (HCT) Blood, 2007, 110, 3010-3010.	0.6	0
76	Higher Mycophenolate Dose Requirements in Children Undergoing Hematopoietic Cell Transplant (HCT) Blood, 2007, 110, 3011-3011.	0.6	0
77	Brain Sparing Conditioning Regimen and Umbilical Cord Blood Transplantation for Inherited High Risk Neurologic Metabolic Diseases Blood, 2007, 110, 3009-3009.	0.6	0
78	A Limited Sampling Model for Estimation of Total and Unbound Mycophenolic Acid (MPA) Area Under the Curve (AUC) in Hematopoietic Cell Transplantation (HCT). Therapeutic Drug Monitoring, 2006, 28, 394-401.	1.0	28
79	Mycophenolate Mofetil in Islet Cell Transplant: Variable Pharmacokinetics but Good Correlation Between Total and Unbound Concentrations. Journal of Clinical Pharmacology, 2005, 45, 901-909.	1.0	14
80	Relationship of mycophenolic acid exposure to clinical outcome after hematopoietic cell transplantation. Clinical Pharmacology and Therapeutics, 2005, 78, 486-500.	2.3	71
81	High Unbound Mycophenolic Acid Concentrations in a Hematopoietic Cell Transplantation Patient with Sepsis and Renal and Hepatic Dysfunction. Biology of Blood and Marrow Transplantation, 2005, 11, 977-978.	2.0	12
82	Fludarabine Pharmacokinetics in Nonmyeloablative Hematopoietic Cell Transplantation (HCT): Association with Engraftment and Neurotoxicty Blood, 2005, 106, 3673-3673.	0.6	6
83	Oral Bioavailability of Mycophenolate Mofetil in Patients Undergoing Nonmyeloablative Hematopoietic Cell Transplantation (HCT) Is Poor and Highly Variable Blood, 2005, 106, 842-842.	0.6	0
84	Posttransplant day significantly influences pharmacokinetics of cyclosporine after hematopoietic stem cell transplantation. Biology of Blood and Marrow Transplantation, 2003, 9, 304-311.	2.0	34
85	Stability of tacrolimus with morphine sulfate, hydromorphone hydrochloride, and ceftazidime during simulated intravenous coadministration. American Journal of Health-System Pharmacy, 1999, 56, 164-169.	0.5	4
86	Stability of tacrolimus in an extemporaneously compounded oral liquid. American Journal of Health-System Pharmacy, 1997, 54, 178-180.	0.5	22
87	Stability of itraconazole in an extemporaneously compounded oral liquid. American Journal of Health-System Pharmacy, 1995, 52, 189-191.	0.5	4
88	Stability of isradipine in an extemporaneously compounded oral liquid. American Journal of Health-System Pharmacy, 1994, 51, 2409-2411.	0.5	10
89	Stability of ganciclovir sodium and amino acids in parenteral nutrient solutions. American Journal of Health-System Pharmacy, 1994, 51, 503-508.	0.5	0
90	Stability of fluconazole and amino acids in parenteral nutrient solutions. American Journal of Health-System Pharmacy, 1992, 49, 1459-1462.	0.5	0

#	Article	IF	CITATIONS
91	Perceptions of pharmacogenetic exceptionalism and the implications for clinical management within an electronic health record. Clinical and Translational Science, 0, , .	1.5	1