
Naoto Kamiuchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4380680/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Oxygen reduction reaction over (Ba,Sr) ₆ RE ₂ Co ₄ O ₁₅ –Ba(Ce,Pr,Y)O ₃ composite cathodes for proton-conducting ceramic fuel cells. Journal of Materials Chemistry A, 2021, 9, 15199-15206.	10.3	9
2	Hydrogen spillover-driven synthesis of high-entropy alloy nanoparticles as a robust catalyst for CO2 hydrogenation. Nature Communications, 2021, 12, 3884.	12.8	109
3	Development of highly selective In2O3/ZrO2 catalyst for hydrogenation of CO2 to methanol: An insight into the catalyst preparation method. Korean Journal of Chemical Engineering, 2020, 37, 1680-1689.	2.7	7
4	Characterization of Nanoscopic Cu/Diamond Interfaces Prepared by Surface-Activated Bonding: Implications for Thermal Management. ACS Applied Nano Materials, 2020, 3, 2455-2462.	5.0	13
5	Enhancement of CO2 adsorption on biochar sorbent modified by metal incorporation. Environmental Science and Pollution Research, 2020, 27, 11809-11829.	5.3	45
6	Impact of focused ion beam on structural and compositional analysis of interfaces fabricated by surface activated bonding. Japanese Journal of Applied Physics, 2020, 59, SBBB05.	1.5	10
7	Artifacts in the structural analysis of SAB-fabricated interfaces by using focused ion beam. , 2019, , .		0
8	Phase-Locked Transmission Electron Microscopy for Detecting Dynamic Responses of Heterogeneous Materials and Electrochemical Devices under an Alternating Electric Potential. Microscopy and Microanalysis, 2018, 24, 1856-1857.	0.4	0
9	Self-activated surface dynamics in gold catalysts under reaction environments. Nature Communications, 2018, 9, 2060.	12.8	38
10	Correlation of catalytic activity with the morphology change of supported Au nanoparticles in gas. Surface Science, 2017, 659, 16-19.	1.9	7
11	Detecting dynamic responses of materials and devices under an alternating electric potential by phase-locked transmission electron microscopy. Ultramicroscopy, 2017, 181, 27-41.	1.9	8
12	Revealing the heterogeneous contamination process in metal nanoparticulate catalysts in CO gas without purification by <i>in situ</i> environmental transmission electron microscopy. Microscopy (Oxford, England), 2016, 65, 522-526.	1.5	3
13	Improved three-way catalytic activity of bimetallic Ir–Rh catalysts supported on CeO ₂ –ZrO ₂ . Catalysis Science and Technology, 2015, 5, 1792-1800.	4.1	45
14	Influences of heat-treatment and measurement atmosphere on the electrochemical property of Pt–SnO device. Catalysis Today, 2015, 258, 196-198.	4.4	0
15	Propene oxidation over palladium catalysts supported on zirconium rich ceria–zirconia. Catalysis Today, 2015, 241, 100-106.	4.4	30
16	Enhancement of OSC property of Zr rich ceria–zirconia by loading a small amount of platinum. Catalysis Today, 2014, 232, 179-184.	4.4	25
17	Bimetallic IrRh/CeO2–ZrO2 as a Highly Active Catalyst for NO–CO–C3H6–H2–O2 Reactions under Stoichiometric Conditions. Chemistry Letters, 2014, 43, 1852-1854.	1.3	0
18	Effect of platinum dispersion on the catalytic activity of Pt/Al2O3 for the oxidation of carbon monoxide and propene. Applied Catalysis B: Environmental, 2013, 142-143, 8-14.	20.2	82

NAOTO КАМІИСНІ

#	Article	IF	CITATIONS
19	CO oxidation over Pt/Ce–Zr oxide catalysts with low content of platinum and cerium components. Catalysis Today, 2013, 201, 79-84.	4.4	51
20	Promoting Effect of CeO2 on the Catalytic Activity of Rhodium Supported on Y-Stabilized ZrO2 for NO–CO–C3H6–O2 Reactions. Chemistry Letters, 2013, 42, 60-62.	1.3	9
21	Microstructural Change of Ni–GDC Cermet Anode in the Electrolyteâ€supported Diskâ€type SOFC upon Daily Startâ€up and Shoutâ€down Operations. Fuel Cells, 2012, 12, 537-542.	2.4	14
22	In situ time-resolved XAFS study on the structural transformation and phase separation of Pt3Sn and PtSn alloy nanoparticles on carbon in the oxidation process. Physical Chemistry Chemical Physics, 2011, 13, 15833.	2.8	62
23	Coreâ^'Shell Phase Separation and Structural Transformation of Pt ₃ Sn Alloy Nanoparticles Supported on γ-Al ₂ O ₃ in the Reduction and Oxidation Processes Characterized by In Situ Time-Resolved XAFS. Journal of Physical Chemistry C, 2011, 115, 5823-5833.	3.1	55
24	Effect of reduction treatment on CO oxidation over Pt/SnO2 catalyst. Catalysis Today, 2011, 164, 169-175.	4.4	26
25	NO Storage-reduction Reaction over Pt–Li ₂ O/TiO ₂ –Al ₂ O _{3Catalysts under SO₂-containing Conditions. Journal of the Japan Petroleum Institute. 2011. 54. 366-372.}	ub> 0.9	0
26	Nano-structural changes of SnO2-supported palladium catalysts by redox treatments. Applied Catalysis A: General, 2010, 379, 148-154.	4.3	22
27	Catalytic combustion of ethyl acetate and nano-structural changes of ruthenium catalysts supported on tin oxide. Applied Catalysis B: Environmental, 2010, 97, 120-126.	20.2	33
28	Activation of Pt/SnO2 catalyst for catalytic oxidation of volatile organic compounds. Catalysis Today, 2010, 157, 415-419.	4.4	46
29	Sintering and redispersion of platinum catalysts supported on tin oxide. Applied Catalysis B: Environmental, 2009, 89, 65-72.	20.2	43
30	Electrochemical CO Oxidation and Microstructure in Pt/Co[sub 3]O[sub 4]-Based Catalysts. Journal of the Electrochemical Society, 2009, 156, K128.	2.9	7
31	Nanoscopic Observation of Strong Chemical Interaction between Pt and Tin Oxide. Journal of Physical Chemistry C, 2007, 111, 16470-16476.	3.1	41