Naoto Kamiuchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4380680/publications.pdf

Version: 2024-02-01

516710 552781 31 841 16 26 citations h-index g-index papers 32 32 32 1160 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Hydrogen spillover-driven synthesis of high-entropy alloy nanoparticles as a robust catalyst for CO2 hydrogenation. Nature Communications, 2021, 12, 3884.	12.8	109
2	Effect of platinum dispersion on the catalytic activity of Pt/Al2O3 for the oxidation of carbon monoxide and propene. Applied Catalysis B: Environmental, 2013, 142-143, 8-14.	20.2	82
3	In situ time-resolved XAFS study on the structural transformation and phase separation of Pt3Sn and PtSn alloy nanoparticles on carbon in the oxidation process. Physical Chemistry Chemical Physics, 2011, 13, 15833.	2.8	62
4	Coreâ°'Shell Phase Separation and Structural Transformation of Pt ₃ Sn Alloy Nanoparticles Supported on γ-Al ₂ O ₃ in the Reduction and Oxidation Processes Characterized by In Situ Time-Resolved XAFS. Journal of Physical Chemistry C, 2011, 115, 5823-5833.	3.1	55
5	CO oxidation over Pt/Ce–Zr oxide catalysts with low content of platinum and cerium components. Catalysis Today, 2013, 201, 79-84.	4.4	51
6	Activation of Pt/SnO2 catalyst for catalytic oxidation of volatile organic compounds. Catalysis Today, 2010, 157, 415-419.	4.4	46
7	Improved three-way catalytic activity of bimetallic Ir–Rh catalysts supported on CeO ₂ –ZrO ₂ . Catalysis Science and Technology, 2015, 5, 1792-1800.	4.1	45
8	Enhancement of CO2 adsorption on biochar sorbent modified by metal incorporation. Environmental Science and Pollution Research, 2020, 27, 11809-11829.	5.3	45
9	Sintering and redispersion of platinum catalysts supported on tin oxide. Applied Catalysis B: Environmental, 2009, 89, 65-72.	20.2	43
10	Nanoscopic Observation of Strong Chemical Interaction between Pt and Tin Oxide. Journal of Physical Chemistry C, 2007, 111, 16470-16476.	3.1	41
11	Self-activated surface dynamics in gold catalysts under reaction environments. Nature Communications, 2018, 9, 2060.	12.8	38
12	Catalytic combustion of ethyl acetate and nano-structural changes of ruthenium catalysts supported on tin oxide. Applied Catalysis B: Environmental, 2010, 97, 120-126.	20.2	33
13	Propene oxidation over palladium catalysts supported on zirconium rich ceria–zirconia. Catalysis Today, 2015, 241, 100-106.	4.4	30
14	Effect of reduction treatment on CO oxidation over Pt/SnO2 catalyst. Catalysis Today, 2011, 164, 169-175.	4.4	26
15	Enhancement of OSC property of Zr rich ceria–zirconia by loading a small amount of platinum. Catalysis Today, 2014, 232, 179-184.	4.4	25
16	Nano-structural changes of SnO2-supported palladium catalysts by redox treatments. Applied Catalysis A: General, 2010, 379, 148-154.	4.3	22
17	Microstructural Change of Ni–GDC Cermet Anode in the Electrolyteâ€supported Diskâ€type SOFC upon Daily Startâ€up and Shoutâ€down Operations. Fuel Cells, 2012, 12, 537-542.	2.4	14
18	Characterization of Nanoscopic Cu/Diamond Interfaces Prepared by Surface-Activated Bonding: Implications for Thermal Management. ACS Applied Nano Materials, 2020, 3, 2455-2462.	5.0	13

#	Article	IF	CITATIONS
19	Impact of focused ion beam on structural and compositional analysis of interfaces fabricated by surface activated bonding. Japanese Journal of Applied Physics, 2020, 59, SBBB05.	1.5	10
20	Promoting Effect of CeO2 on the Catalytic Activity of Rhodium Supported on Y-Stabilized ZrO2 for NO–CO–C3H6–O2 Reactions. Chemistry Letters, 2013, 42, 60-62.	1.3	9
21	Oxygen reduction reaction over (Ba,Sr) ₆ RE ₂ Co ₄ O ₁₅ â€"Ba(Ce,Pr,Y)O ₃ composite cathodes for proton-conducting ceramic fuel cells. Journal of Materials Chemistry A, 2021, 9. 15199-15206.	10.3	9
22	Detecting dynamic responses of materials and devices under an alternating electric potential by phase-locked transmission electron microscopy. Ultramicroscopy, 2017, 181, 27-41.	1.9	8
23	Electrochemical CO Oxidation and Microstructure in Pt/Co[sub 3]O[sub 4]-Based Catalysts. Journal of the Electrochemical Society, 2009, 156, K128.	2.9	7
24	Correlation of catalytic activity with the morphology change of supported Au nanoparticles in gas. Surface Science, 2017, 659, 16-19.	1.9	7
25	Development of highly selective In2O3/ZrO2 catalyst for hydrogenation of CO2 to methanol: An insight into the catalyst preparation method. Korean Journal of Chemical Engineering, 2020, 37, 1680-1689.	2.7	7
26	Revealing the heterogeneous contamination process in metal nanoparticulate catalysts in CO gas without purification by <i>in situ</i> environmental transmission electron microscopy. Microscopy (Oxford, England), 2016, 65, 522-526.	1.5	3
27	Bimetallic IrRh/CeO2–ZrO2 as a Highly Active Catalyst for NO–CO–C3H6–H2–O2 Reactions under Stoichiometric Conditions. Chemistry Letters, 2014, 43, 1852-1854.	1.3	0
28	Influences of heat-treatment and measurement atmosphere on the electrochemical property of Ptâ€"SnO device. Catalysis Today, 2015, 258, 196-198.	4.4	0
29	Phase-Locked Transmission Electron Microscopy for Detecting Dynamic Responses of Heterogeneous Materials and Electrochemical Devices under an Alternating Electric Potential. Microscopy and Microanalysis, 2018, 24, 1856-1857.	0.4	0
30	NO Storage-reduction Reaction over Ptâ€"Li ₂ â€"Al ₂ O ₃ a€"Al ₂ O ₃₂ -containing Conditions. Journal of the Japan Petroleum Institute, 2011, 54, 366-372.	ub>	0
31	Artifacts in the structural analysis of SAB-fabricated interfaces by using focused ion beam., 2019,,.		O