
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4380430/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mixed Metal–Organic Framework Stationary Phases for Liquid Chromatography. ACS Nano, 2022, 16, 6771-6780.	7.3	12
2	Toughening and stabilizing MOF crystals <i>via</i> polymeric guest inclusion. Dalton Transactions, 2022, 51, 13204-13209.	1.6	6
3	Design of Porous Coordination Materials with Dynamic Properties. Bulletin of the Chemical Society of Japan, 2021, 94, 60-69.	2.0	34
4	Crystal Flexibility Design through Local and Global Motility Cooperation. Angewandte Chemie, 2021, 133, 7106-7111.	1.6	0
5	Crystal Flexibility Design through Local and Global Motility Cooperation. Angewandte Chemie - International Edition, 2021, 60, 7030-7035.	7.2	23
6	Metalâ€Organic Frameworks for Practical Separation of Cyclic and Linear Polymers. Angewandte Chemie - International Edition, 2021, 60, 11830-11834.	7.2	18
7	Metalâ€Organic Frameworks for Practical Separation of Cyclic and Linear Polymers. Angewandte Chemie, 2021, 133, 11936-11940.	1.6	0
8	Development of Functional Materials via Polymer Encapsulation into Metal–Organic Frameworks. Bulletin of the Chemical Society of Japan, 2021, 94, 2139-2148.	2.0	26
9	Metal–Organic Frameworks as Versatile Media for Polymer Adsorption and Separation. Accounts of Chemical Research, 2021, 54, 3593-3603.	7.6	29
10	Revisiting molecular adsorption: unconventional uptake of polymer chains from solution into sub-nanoporous media. Chemical Science, 2021, 12, 12576-12586.	3.7	23
11	Pseudoâ€Gated Adsorption with Negligible Volume Change Evoked by Halogenâ€Bond Interaction in the Nanospace of MOFs. Chemistry - A European Journal, 2020, 26, 2148-2153.	1.7	21
12	Unimolecularly thick monosheets of vinyl polymers fabricated in metal–organic frameworks. Nature Communications, 2020, 11, 3573.	5.8	27
13	Metal-Organic Frameworks for Macromolecular Recognition and Separation. Matter, 2020, 3, 652-663.	5.0	28
14	Die Chemie verformbarer poröser Kristalle – Strukturdynamik und Gasadsorptionseigenschaften. Angewandte Chemie, 2020, 132, 15438-15456.	1.6	28
15	Chemistry of Soft Porous Crystals: Structural Dynamics and Gas Adsorption Properties. Angewandte Chemie - International Edition, 2020, 59, 15325-15341.	7.2	236
16	Structuralâ€Deformationâ€Energyâ€Modulation Strategy in a Soft Porous Coordination Polymer with an Interpenetrated Framework. Angewandte Chemie, 2020, 132, 15647-15651.	1.6	4
17	Structuralâ€Deformationâ€Energyâ€Modulation Strategy in a Soft Porous Coordination Polymer with an Interpenetrated Framework. Angewandte Chemie - International Edition, 2020, 59, 15517-15521.	7.2	38
18	Recognition of Polymer Terminus by Metal–Organic Frameworks Enabling Chromatographic Separation of Polymers. Journal of the American Chemical Society, 2020, 142, 3701-3705.	6.6	50

#	Article	IF	CITATIONS
19	Observation of an exotic state of water in the hydrophilic nanospace of porous coordination polymers. Communications Chemistry, 2020, 3, .	2.0	12
20	Design and Application of Porous Coordination Materials with Soft and Dynamic Nature. Bulletin of Japan Society of Coordination Chemistry, 2020, 75, 42-50.	0.1	0
21	Bottom-up Synthesis of Defect-free Mixed-matrix Membranes by Using Polymer-grafted Metal–Organic Polyhedra. Chemistry Letters, 2019, 48, 597-600.	0.7	22
22	Carbon dioxide capture and efficient fixation in a dynamic porous coordination polymer. Nature Communications, 2019, 10, 4362.	5.8	91
23	Design and control of gas diffusion process in a nanoporous soft crystal. Science, 2019, 363, 387-391.	6.0	332
24	Microwaveâ€Assisted Hydrothermal Synthesis of [Al(OH)(1,4â€NDC)] Membranes with Superior Separation Performances. Chemistry - an Asian Journal, 2019, 14, 2072-2076.	1.7	18
25	Highly responsive nature of porous coordination polymer surfaces imaged by in situ atomic force microscopy. Nature Chemistry, 2019, 11, 109-116.	6.6	75
26	Reversible Switching between Highly Porous and Nonporous Phases of an Interpenetrated Diamondoid Coordination Network That Exhibits Gateâ€Opening at Methane Storage Pressures. Angewandte Chemie - International Edition, 2018, 57, 5684-5689.	7.2	161
27	Reversible Switching between Highly Porous and Nonporous Phases of an Interpenetrated Diamondoid Coordination Network That Exhibits Gateâ€Opening at Methane Storage Pressures. Angewandte Chemie, 2018, 130, 5786-5791.	1.6	27
28	Efficient CO ₂ Removal for Ultra â€ Pure CO Production by Two Hybrid Ultramicroporous Materials. Angewandte Chemie - International Edition, 2018, 57, 3332-3336.	7.2	52
29	Efficient CO ₂ Removal for Ultra â€ Pure CO Production by Two Hybrid Ultramicroporous Materials. Angewandte Chemie, 2018, 130, 3390-3394.	1.6	12
30	Finely Controlled Stepwise Engineering of Pore Environments and Mechanistic Elucidation of Waterâ €S table, Flexible 2D Porous Coordination Polymers. Chemistry - A European Journal, 2018, 24, 6412-6417.	1.7	16
31	Anisotropic convergence of dendritic macromolecules facilitated by a heteroleptic metal–organic polyhedron scaffold. Chemical Communications, 2018, 54, 5209-5212.	2.2	16
32	Readily accessible shape-memory effect in a porous interpenetrated coordination network. Science Advances, 2018, 4, eaaq1636.	4.7	61
33	Modular Self-Assembly and Dynamics in Coordination Star Polymer Glasses: New Media for Ion Transport. Chemistry of Materials, 2018, 30, 8555-8561.	3.2	27
34	Modular Design of Porous Soft Materials via Self-Organization of Metal–Organic Cages. Accounts of Chemical Research, 2018, 51, 2437-2446.	7.6	133
35	Paraffinic metal–organic polyhedrons: solution-processable porous modules exhibiting three-dimensional molecular order. Chemical Communications, 2018, 54, 7290-7293.	2.2	19
36	Atomic Force Microscopy Study of the Influence of the Synthesis Conditions on the Singleâ€Crystal Surface of Interdigitated Metalâ€Organic Frameworks. ChemPhysChem, 2018, 19, 2134-2138.	1.0	7

#	Article	IF	CITATIONS
37	Atomic Force Microscopy Study of the Influence of the Synthesis Conditions on the Single-Crystal Surface of Interdigitated Metal-Organic Frameworks. ChemPhysChem, 2018, 19, 2122-2122.	1.0	0
38	Development of a Porous Coordination Polymer with a High Gas Capacity Using a Thiophene-Based Bent Tetracarboxylate Ligand. ACS Applied Materials & Interfaces, 2017, 9, 33455-33460.	4.0	32
39	Cooperative Bond Scission in a Soft Porous Crystal Enables Discriminatory Gate Opening for Ethylene over Ethane. Journal of the American Chemical Society, 2017, 139, 18313-18321.	6.6	72
40	Fine-tuning optimal porous coordination polymers using functional alkyl groups for CH ₄ purification. Journal of Materials Chemistry A, 2017, 5, 17874-17880.	5.2	32
41	Anisotropic coordination star polymers realized by self-sorting core modulation. Chemical Communications, 2017, 53, 8180-8183.	2.2	23
42	Metal–Organic Polyhedral Core as a Versatile Scaffold for Divergent and Convergent Star Polymer Synthesis. Journal of the American Chemical Society, 2016, 138, 6525-6531.	6.6	93
43	Forced Unfolding of Single-Chain Polymeric Nanoparticles. Journal of the American Chemical Society, 2015, 137, 6880-6888.	6.6	89
44	The effect of pendant benzene-1,3,5-tricarboxamides in the middle block of ABA triblock copolymers: synthesis and mechanical properties. Polymer Chemistry, 2014, 5, 1463-1470.	1.9	14
45	"Soldier–Sergeant–Soldier―triblock copolymers: revealing the folded structure of single-chain polymeric nanoparticles. Chemical Communications, 2014, 50, 7990-7993.	2.2	37
46	Photochemical reaction in azobenzene-containing rigid poly(amide acid) networks. Polymer, 2014, 55, 5648-5655.	1.8	6
47	Rigid Polyimide Networks Endâ€Linked with Tri―and Tetraâ€armed Crosslinkers. Macromolecular Chemistry and Physics, 2014, 215, 988-997.	1.1	2
48	Consequences of Block Sequence on the Orthogonal Folding of Triblock Copolymers. Chemistry - an Asian Journal, 2014, 9, 1099-1107.	1.7	20
49	Photoinduced Deformation of Rigid Azobenzene-Containing Polymer Networks. Macromolecules, 2013, 46, 1017-1026.	2.2	40
50	Hingeâ€Linked Polymer Gels: A Rigid Network Crossâ€Linked with a Rotatable Tetrasubstituted Ferrocene. Macromolecular Chemistry and Physics, 2013, 214, 1356-1362.	1.1	7
51	Orthogonal Self-Assembly in Folding Block Copolymers. Journal of the American Chemical Society, 2013, 135, 501-510.	6.6	184
52	Large-Area Three-Dimensional Molecular Ordering of a Polymer Brush by One-Step Processing. Science, 2010, 330, 808-811.	6.0	164
53	Title is missing!. Kobunshi, 2007, 56, 493-496.	0.0	0
54	A molecular dynamics simulation study on polymer networks of end-linked flexible or rigid chains. Journal of Chemical Physics, 2007, 127, 164905.	1.2	26

#	Article	IF	CITATIONS
55	Photochemical control of network structure in gels and photo-induced changes in their viscoelastic properties. Colloids and Surfaces B: Biointerfaces, 2007, 56, 285-289.	2.5	20
56	Direct observation of porous coordination polymer surfaces by atomic force microscopy. Japanese Journal of Applied Physics, 0, , .	0.8	0
57	Direct observation of porous coordination polymer surfaces by atomic force microscopy. Japanese Journal of Applied Physics, 0, , .	0.8	1