
Paulius Baronas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4378586/publications.pdf Version: 2024-02-01

DATITUS RADONAS

#	Article	IF	CITATIONS
1	Efficient NIR-to-vis photon upconversion in binary rubrene films deposited by simplified thermal evaporation. Journal of Materials Chemistry C, 2022, 10, 6314-6322.	2.7	13
2	Mechanistic Insights into the Photoisomerization of <i>N,N′</i> â€Disubstituted Indigos. Chemistry - A European Journal, 2022, 28, .	1.7	9
3	NIR-to-vis photon upconversion in rubrenes with increasing structural complexity. Journal of Materials Chemistry C, 2021, 9, 4359-4366.	2.7	12
4	Effect of Substituents at Imide Positions on the Laser Performance of 1,7-Bay-Substituted Perylenediimide Dyes. Journal of Physical Chemistry C, 2021, 125, 12277-12288.	1.5	7
5	Helical Molecular Orbitals to Induce Spin–Orbit Coupling in Oligoyne-Bridged Bifluorenes. Journal of Physical Chemistry Letters, 2021, 12, 6827-6833.	2.1	11
6	Energy transfer in (PEA) ₂ FA _{nâ^'1} Pb _n Br _{3n+1} quasi-2D perovskites. Journal of Materials Chemistry C, 2021, 9, 4782-4791.	2.7	6
7	Enhanced Energy Transfer in Doped Bifluorene Single Crystals: Prospects for Organic Lasers. Advanced Optical Materials, 2020, 8, 1901670.	3.6	14
8	Proof of principle of a purine D–A–Dâ€2 ligand based ratiometric chemical sensor harnessing complexation induced intermolecular PET. Physical Chemistry Chemical Physics, 2020, 22, 26502-26508.	1.3	6
9	Impact of <i>t</i> -butyl substitution in a rubrene emitter for solid state NIR-to-visible photon upconversion. Physical Chemistry Chemical Physics, 2020, 22, 7392-7403.	1.3	32
10	Understanding the limitations of NIR-to-visible photon upconversion in phthalocyanine-sensitized rubrene systems. Journal of Materials Chemistry C, 2020, 8, 5525-5534.	2.7	35
11	Carrier Recombination and Diffusion in Wet-Cast Tin Iodide Perovskite Layers Under High Intensity Photoexcitation. Journal of Physical Chemistry C, 2019, 123, 19275-19281.	1.5	8
12	Suppression of Charge Transfer States in Aryl-Substituted 9,9′-Bianthryl Derivatives. Journal of Physical Chemistry C, 2019, 123, 27344-27354.	1.5	6
13	Origin of dual emission in σ-bridged donor–acceptor TADF compounds. Journal of Materials Chemistry C, 2019, 7, 12601-12609.	2.7	32
14	Exciton diffusion in bifluorene single crystals studied by light induced transient grating technique. Applied Physics Letters, 2018, 112, .	1.5	10
15	Low-Threshold Light Amplification in Bifluorene Single Crystals: Role of the Trap States. ACS Applied Materials & Interfaces, 2018, 10, 2768-2775.	4.0	22
16	Diffusion Enhancement in Highly Excited MAPbI ₃ Perovskite Layers with Additives. Journal of Physical Chemistry Letters, 2018, 9, 3167-3172.	2.1	46
17	Enhancement of triplet-sensitized upconversion in rigid polymers <i>via</i> singlet exciton sink approach. Chemical Science, 2018, 9, 6796-6802.	3.7	30
18	Bifluorene Single Crystals with Extremely Lowâ€Threshold Amplified Spontaneous Emission. Advanced Optical Materials, 2017, 5, 1600823.	3.6	14

Paulius Baronas

#	Article	IF	CITATIONS
19	Impact of Donor Substitution Pattern on the TADF Properties in the Carbazolyl-Substituted Triazine Derivatives. Journal of Physical Chemistry C, 2017, 121, 23618-23625.	1.5	52
20	The Role of Triplet Exciton Diffusion in Light-Upconverting Polymer Glasses. ACS Applied Materials & Interfaces, 2016, 8, 15732-15740.	4.0	50
21	High-triplet-energy carbazole and fluorene tetrads. Journal of Luminescence, 2016, 169, 256-265.	1.5	10
22	Heterocyclic heptacene analogs – 8H-16,17-epoxydinaphto[2,3-c:2′,3′-g]carbazoles as charge transport materials. Dyes and Pigments, 2016, 124, 133-144.	2.0	10
23	2,4-Bis(4-aryl-1,2,3-triazol-1-yl)pyrrolo[2,3-d]pyrimidines: synthesis and tuning of optical properties by polar substituents. RSC Advances, 2015, 5, 38610-38622.	1.7	14
24	Fluorene- and benzofluorene-cored oligomers as low threshold and high gain amplifying media. Applied Physics Letters, 2015, 107, .	1.5	27
25	Differently linked fluorene-carbazole triads for light amplification. Dyes and Pigments, 2015, 123, 370-379.	2.0	15
26	Phenylethenyl‣ubstituted Triphenylamines: Efficient, Easily Obtainable, and Inexpensive Holeâ€Transporting Materials. Chemistry - A European Journal, 2013, 19, 15044-15056.	1.7	27
27	1,2,3-Triazoles as leaving groups in purine chemistry: a three-step synthesis of N6-substituted-2-triazolyl-adenine nucleosides and photophysical properties thereof. Tetrahedron Letters, 2013, 54, 850-853.	0.7	38