
Shin-ichi Kawaguchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4378508/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	DNA methyltransferase 3a regulates osteoclast differentiation by coupling to an S-adenosylmethionine–producing metabolic pathway. Nature Medicine, 2015, 21, 281-287.	30.7	190
2	Molecular Mechanism of Cellular Oxidative Stress Sensing by Keap1. Cell Reports, 2019, 28, 746-758.e4.	6.4	179
3	Photochemical behaviors of tetraphenyldiphosphine in the presence of alkynes. Tetrahedron Letters, 2006, 47, 3919-3922.	1.4	76
4	Highly Selective Hydroiodation of Alkynes Using an Iodineâ^'Hydrophosphine Binary System. Organic Letters, 2010, 12, 1893-1895.	4.6	66
5	Highly Regioselective Simultaneous Introduction of Phosphino and Seleno Groups into Unsaturated Bonds by the Novel Combination of (Ph ₂ P) ₂ and (PhSe) ₂ upon Photoirradiation. Journal of Organic Chemistry, 2009, 74, 1751-1754.	3.2	63
6	Highly Selective Phosphinylphosphination of Alkenes with Tetraphenyldiphosphine Monoxide. Angewandte Chemie - International Edition, 2016, 55, 9700-9703.	13.8	60
7	Highly Selective Double Chalcogenation of Isocyanides with Disulfideâ^'Diselenide Mixed Systems. Journal of Organic Chemistry, 2007, 72, 415-423.	3.2	59
8	Hypoxia Signaling Cascade for Erythropoietin Production in Hepatocytes. Molecular and Cellular Biology, 2015, 35, 2658-2672.	2.3	54
9	A Benzoyl Peroxide/Diphenyl Diselenide Binary System for Functionalization of Alkynes Leading to Alkenyl and Alkynyl Selenides. Journal of Organic Chemistry, 2017, 82, 12477-12484.	3.2	47
10	Photoinduced hydrophosphinylation of alkenes with diphenylphosphine oxide. Tetrahedron Letters, 2009, 50, 624-626.	1.4	46
11	Highly Selective Phosphinylphosphination of Alkenes with Tetraphenyldiphosphine Monoxide. Angewandte Chemie, 2016, 128, 9852-9855.	2.0	46
12	Palladium-Catalyzed Synthesis of α-Diimines from Triarylbismuthines and Isocyanides. Organic Letters, 2015, 17, 3490-3493.	4.6	45
13	Photoinduced highly selective thiophosphination of alkynes using a (PhS)2/(Ph2P)2 binary system. Tetrahedron Letters, 2008, 49, 4043-4046.	1.4	41
14	Synthesis and Properties of Perfluoroalkyl Phosphine Ligands: Photoinduced Reaction of Diphosphines with Perfluoroalkyl lodides. Angewandte Chemie - International Edition, 2013, 52, 1748-1752.	13.8	39
15	Photoinduced metal-free diboration of alkynes in the presence of organophosphine catalysts. Tetrahedron, 2016, 72, 7832-7838.	1.9	37
16	Highly Selective Phosphinotelluration of Terminal Alkynes Using a (Ph ₂ P) ₂ A^*(PhTe) ₂ Mixed System upon Visible Light Irradiation: Straightforward Access to 1-Phosphino-2-telluro-alkenes. Organometallics, 2010, 29, 312-316.	2.3	34
17	Photoinduced Cyclizations of <i>o</i> -Diisocyanoarenes with Organic Diselenides and Thiols that Afford Chalcogenated Quinoxalines. Journal of Organic Chemistry, 2020, 85, 7258-7266.	3.2	32
18	A highly regioselective hydrophosphination of terminal alkynes with tetraphenyldiphosphine in the presence of palladium catalyst. Tetrahedron Letters, 2007, 48, 6637-6640.	1.4	31

Shin-ichi Kawaguchi

#	Article	IF	CITATIONS
19	A Highly Regioselective Palladium-Catalyzed Hydrophosphination of Alkynes Using a Diphosphineâ^'Hydrosilane Binary System. Journal of Organic Chemistry, 2008, 73, 7928-7933.	3.2	30
20	Photoinduced synthesis of unsymmetrical diaryl selenides from triarylbismuthines and diaryl diselenides. Beilstein Journal of Organic Chemistry, 2013, 9, 1141-1147.	2.2	27
21	Synthesis of Bis(phosphanyl)alkane Monosulfides by the Addition of Diphosphane Monosulfides to Alkenes under Light. Chemistry - A European Journal, 2019, 25, 2295-2302.	3.3	26
22	Reductive Rearrangement of Tetraphenyldiphosphine Disulfide To Trigger the Bisthiophosphinylation of Alkenes and Alkynes. Chemistry - A European Journal, 2019, 25, 6797-6806.	3.3	25
23	A convenient hydroiodination of alkynes using I2/PPh3/H2O and its application to the one-pot synthesis of trisubstituted alkenes via iodoalkenes using Pd-catalyzed cross-coupling reactions. Tetrahedron Letters, 2014, 55, 6779-6783.	1.4	23
24	Rhodium-Catalyzed Highly Stereoselective Hydroselenation of Internal Alkynes Bearing an Electron-withdrawing Group. Organometallics, 2011, 30, 6766-6769.	2.3	22
25	Palladium-Catalyzed Cyanothiolation of Internal Alkynes Using Organic Disulfides and <i>tert</i> -Butyl Isocyanide. Journal of Organic Chemistry, 2018, 83, 5267-5273.	3.2	22
26	A salt-free synthesis of 1,2-bisphosphorylethanes via an efficient PMe3-catalyzed addition of >P(O)H to vinylphosphoryl compounds. Tetrahedron Letters, 2015, 56, 5303-5305.	1.4	21
27	Photoinduced Synthesis of <i>P</i> â€Perfluoroalkylated Phosphines from Triarylphosphines and Their Application in the Copperâ€Free Crossâ€Coupling of Acid Chlorides and Terminal Alkynes. Advanced Synthesis and Catalysis, 2015, 357, 2509-2519.	4.3	20
28	Highly regioselective hydroselenation of inactivated terminal alkynes using diselenide–Ph2P(O)H mixed systems under visible-light irradiation. Tetrahedron Letters, 2013, 54, 5453-5456.	1.4	19
29	Synthesis of Aryl lodides from Arylhydrazines and lodine. ACS Omega, 2018, 3, 9814-9821.	3.5	18
30	Highly regioselective hydroiodination of terminal alkynes and silylalkynes with iodine and phosphorus reagents leading to internal iodoalkenes. Tetrahedron, 2012, 68, 9818-9825.	1.9	16
31	Catalytic synthesis of sulfur and phosphorus compounds via atom-economic reactions. Mendeleev Communications, 2020, 30, 129-138.	1.6	16
32	Photoinduced reductive perfluoroalkylation of phosphine oxides: synthesis of P-perfluoroalkylated phosphines using TMDPO and perfluoroalkyl iodides. Chemical Communications, 2015, 51, 10385-10388.	4.1	15
33	The PMe3-catalyzed addition of enantiomerically pure (â~')-MenthylO(Ph)P(O)H to electron-deficient alkenes: an efficient way for the preparation of P-stereogenic compounds. Tetrahedron: Asymmetry, 2017, 28, 84-89.	1.8	15
34	Applications of Diphosphines in Radical Reactions. Asian Journal of Organic Chemistry, 2019, 8, 1164-1173.	2.7	14
35	Palladium-catalyzed Sonogashira cross-coupling of organic tellurides with alkynes. Tetrahedron Letters, 2011, 52, 4120-4122.	1.4	12
36	Rhodium-Catalyzed Anti-Markovnikov–Type Hydrophosphination of Terminal Alkynes with Diphosphines and Hydrosilanes in the Presence of Oxygen. Phosphorus, Sulfur and Silicon and the Related Elements, 2010, 185, 1090-1097.	1.6	11

#	Article	IF	CITATIONS
37	Highly Selective Addition of Phosphorus-Containing Interelement Compounds to Alkynes. Synlett, 2013, 24, 2199-2215.	1.8	10
38	Photoinduced Coupling Reaction of Diphenyl(2,4,6-trimethylbenzoyl)phosphine Oxide with Interelement Compounds: Application to the Synthesis of Thio- or Selenophosphinates. Synthesis, 2017, 49, 3558-3567.	2.3	10
39	Copper-catalyzed tandem reaction directed toward synthesis of 2,2-disubstituted quinazolinones from vinyl halides and 2-aminobenzamides. Tetrahedron Letters, 2017, 58, 4043-4047.	1.4	9
40	Photoinduced Syntheses and Reactivities of Phosphorus-Containing Interelement Compounds. Journal of Organic Chemistry, 2020, 85, 14708-14719.	3.2	8
41	Phosphorus-Recycling Wittig Reaction: Design and Facile Synthesis of a Fluorous Phosphine and Its Reusable Process in the Wittig Reaction. Journal of Organic Chemistry, 2020, 85, 14684-14696.	3.2	8
42	Discovery of an <scp>NRF</scp> 1â€specific inducer from a largeâ€scale chemical library using a direct <scp>NRF</scp> 1â€protein monitoring system. Genes To Cells, 2015, 20, 563-577.	1.2	7
43	Hydroiodinationâ€Triggered Cascade Reaction with I ₂ /PPh ₃ /H ₂ O: Metalâ€Free Access to 3â€Substituted Phthalides from 2â€Alkynylbenzoates. European Journal of Organic Chemistry, 2017, 2017, 5343-5346.	2.4	7
44	Palladium-Catalyzed Diarylation of Isocyanides with Tetraarylleads for the Selective Synthesis of Imines and α-Diimines. Journal of Organic Chemistry, 2019, 84, 11741-11751.	3.2	7
45	Photoinduced selective hydrophosphinylation of allylic compounds with diphenylphosphine oxide leading to Î ³ -functionalized P-ligand precursors. Research on Chemical Intermediates, 2021, 47, 3067-3078.	2.7	6
46	The Development of Highly Selective Addition Reactions of Tetraphenyldiphosphine to Carbon-Carbon Unsaturated Bonds. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2010, 68, 705-717.	0.1	6
47	Furan- and Thiophene-2-Carbonyl Amino Acid Derivatives Activate Hypoxia-Inducible Factor via Inhibition of Factor Inhibiting Hypoxia-Inducible Factor-1. Molecules, 2018, 23, 885.	3.8	5
48	Highly regio- and stereoselective phosphinylphosphination of terminal alkynes with tetraphenyldiphosphine monoxide under radical conditions. Beilstein Journal of Organic Chemistry, 2021, 17, 866-872.	2.2	5
49	Hypoxia-Sensitive Reporter System for High-Throughput Screening. Tohoku Journal of Experimental Medicine, 2015, 235, 151-159.	1.2	4
50	P-Fluorous Phosphines as Electron-Poor/Fluorous Hybrid Functional Ligands for Precious Metal Catalysts: Synthesis of Rh(I), Ir(I), Pt(II), and Au(I) Complexes Bearing P-Fluorous Phosphine Ligands. Inorganics, 2017, 5, 5.	2.7	3
51	Transition-Metal-Catalyzed Diarylation of Isocyanides with Triarylbismuthines for the Selective Synthesis of Imine Derivatives. Materials, 2021, 14, 4271.	2.9	2
52	Prolyl Hydroxylase Domain Protein Inhibitor Not Harboring a 2-Oxoglutarate Scaffold Protects against Hypoxic Stress. ACS Pharmacology and Translational Science, 2022, 5, 362-372.	4.9	2
53	Highly Selective Hydroiodination of Carbon-Carbon Double or Triple Bonds. Current Organic Chemistry, 2020, 24, 2153-2168.	1.6	1
54	Front Cover: Hydroiodination-Triggered Cascade Reaction with I2 /PPh3 /H2 O: Metal-Free Access to 3-Substituted Phthalides from 2-Alkynylbenzoates (Eur. J. Org. Chem. 36/2017). European Journal of Organic Chemistry, 2017, 2017, 5315-5315.	2.4	0