Juan M Snchez

List of Publications by Citations

Source: https://exaly.com/author-pdf/4377927/juan-m-sanchez-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
54	The selective adsorption of gold (III) and palladium (II) on new phosphine sulphide-type chelating polymers bearing different spacer arms. <i>Reactive and Functional Polymers</i> , 2001 , 46, 283-291	4.6	95
53	Development of a multibed sorption trap, comprehensive two-dimensional gas chromatography, and time-of-flight mass spectrometry system for the analysis of volatile organic compounds in human breath. <i>Analytical Chemistry</i> , 2006 , 78, 3046-54	7.8	84
52	GC analysis of human breath with a series-coupled column ensemble and a multibed sorption trap. <i>Analytical Chemistry</i> , 2003 , 75, 2231-6	7.8	78
51	Comparison of micellar and microemulsion electrokinetic chromatography for the analysis of water- and fat-soluble vitamins. <i>Journal of Chromatography A</i> , 2002 , 950, 241-7	4.5	56
50	Headspace needle-trap analysis of priority volatile organic compounds from aqueous samples: application to the analysis of natural and waste waters. <i>Journal of Chromatography A</i> , 2011 , 1218, 8131-	9 1·5	55
49	Monitoring of sixteen fragrance allergens and two polycyclic musks in wastewater treatment plants by solid phase microextraction coupled to gas chromatography. <i>Chemosphere</i> , 2015 , 119, 363-370	8.4	41
48	New macroporous polymers for the selective adsorption of gold (III) and palladium (II). I. The synthesis, characterization, and effect of spacers on metal adsorption. <i>Journal of Polymer Science Part A</i> , 2000 , 38, 269-278	2.5	38
47	Evaluation of potential breath biomarkers for active smoking: assessment of smoking habits. Analytical and Bioanalytical Chemistry, 2010 , 396, 2987-95	4.4	36
46	Analytical challenges in breath analysis and its application to exposure monitoring. <i>TrAC - Trends in Analytical Chemistry</i> , 2013 , 44, 78-89	14.6	35
45	On-line multibed sorption trap and injector for the GC analysis of organic vapors in large-volume air samples. <i>Analytical Chemistry</i> , 2003 , 75, 978-85	7.8	35
44	Sorbent-packed needle microextraction trap for benzene, toluene, ethylbenzene, and xylenes determination in aqueous samples. <i>Journal of Separation Science</i> , 2010 , 33, 2833-40	3.4	34
43	Needle microextraction trap for on-site analysis of airborne volatile compounds at ultra-trace levels in gaseous samples. <i>Journal of Separation Science</i> , 2011 , 34, 2705-11	3.4	33
42	Synthesised phosphine sulphide-type macroporous polymers for the preconcentration and separation of gold (III) and palladium (II) in a column system. <i>Reactive and Functional Polymers</i> , 2001 , 49, 215-224	4.6	33
41	On-line multi-bed sorption trap for VOC analysis of large-volume vapor samples: injection plug width, effects of water vapor and sample decomposition. <i>Journal of Separation Science</i> , 2005 , 28, 22-30	3.4	31
40	A headspace needle-trap method for the analysis of volatile organic compounds in whole blood. <i>Journal of Chromatography A</i> , 2012 , 1252, 23-30	4.5	30
39	A Comparison of the Separation Behavior of Some New Coordinating Resins and Commercial Quaternary Ammonium Resins with Reference to Their Separation of Gold(III) and Palladium(II) in Hydrochloric Acid Media. <i>Solvent Extraction and Ion Exchange</i> , 2004 , 22, 285-303	2.5	28
38	Speciation of iridium(IV) in hydrochloric acid medium by means of capillary zone electrophoresis and spectrophotometry. <i>Journal of Chromatography A</i> , 1999 , 834, 329-340	4.5	28

HEXANE. Solvent Extraction and Ion Exchange, 1999, 17, 455-474	2.5	27
The speciation of rhodium(III) in hydrochloric acid media by capillary zone electrophoresis. <i>Talanta</i> , 2002 , 56, 1061-71	6.2	26
Odour-causing organic compounds in wastewater treatment plants: evaluation of headspace solid-phase microextraction as a concentration technique. <i>Journal of Chromatography A</i> , 2011 , 1218, 4863-8	4.5	24
Assessment of environmental tobacco smoke contamination in public premises: significance of 2,5-dimethylfuran as an effective marker. <i>Environmental Science & Environmental & Environ</i>	10.3	24
Capillary thermal desorption unit for near real-time analysis of VOCs at sub-trace levels. Application to the analysis of environmental air contamination and breath samples. <i>Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences</i> , 2009 , 877, 1472-8	3.2	22
Separation of some platinum group metal chelates with 8-hydroxyquinoline by various high-performance liquid chromatographic methods. <i>Journal of Chromatography A</i> , 2000 , 871, 217-26	4.5	21
THE SEPARATION OF Au(III) AND Pd(II) IN HYDROCHLORIC ACID SOLUTIONS BY STRONG ANION TYPE II EXCHANGE RESINS: THE EFFECT OF COUNTER ION CONCENTRATION AND TEMPERATURE. <i>Solvent Extraction and Ion Exchange</i> , 2000 , 18, 1199-1217	2.5	20
The evaluation of different sorbents for the preconcentration of phenoxyacetic acid herbicides and their metabolites from soils. <i>Journal of Chromatography A</i> , 2005 , 1099, 55-63	4.5	19
Sorbent-packed needle microextraction trap for synthetic musks determination in wastewater samples. <i>Talanta</i> , 2015 , 132, 548-56	6.2	16
Methylxanthine Content in Commonly Consumed Foods in Spain and Determination of Its Intake during Consumption. <i>Foods</i> , 2017 , 6,	4.9	16
Effects of packing density, flow and humidity on the performance of needle trap devices. <i>Journal of Chromatography A</i> , 2014 , 1369, 18-25	4.5	15
Assessment of the effect of UV and chlorination in the transformation of fragrances in aqueous samples. <i>Chemosphere</i> , 2015 , 125, 25-32	8.4	15
Ethyl-bridged hybrid column as an efficient alternative for HPLC analysis of plasma amino acids by pre-column derivatization with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate. <i>Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences</i> , 2016 , 1029-1030, 137-144	3.2 I	14
Low Levels of Caveolin-1 Predict Symptomatic Bleeding After Thrombolytic Therapy in Patients With Acute Ischemic Stroke. <i>Stroke</i> , 2018 , 49, 1525-1527	6.7	12
Breath gas concentrations mirror exposure to sevoflurane and isopropyl alcohol in hospital environments in non-occupational conditions. <i>Journal of Breath Research</i> , 2016 , 10, 016001	3.1	11
Performance characteristics of a new prototype for a portable GC using ambient air as carrier gas for on-site analysis. <i>Journal of Separation Science</i> , 2007 , 30, 1052-60	3.4	11
Odour-causing compounds in air samples: gas-liquid partition coefficients and determination using solid-phase microextraction and GC with mass spectrometric detection. <i>Journal of Separation Science</i> , 2013 , 36, 1045-53	3.4	10
Preconcentration and determination of priority pollutant phenols in waters at trace levels using a polymeric solid-phase extraction cartridge. <i>Journal of Separation Science</i> , 2004 , 27, 1524-30	3.4	10
	The speciation of rhodium(III) in hydrochloric acid media by capillary zone electrophoresis. <i>Talanta</i> , 2002, 56, 1061-71 Odour-causing organic compounds in wastewater treatment plants: evaluation of headspace solid-phase microextraction as a concentration technique. <i>Journal of Chromatography A</i> , 2011, 1218, 4863-8 Assessment of environmental tobacco smoke contamination in public premises: significance of 2,5-dimethylfuran as an effective marker. <i>Environmental Science & amp, Technology</i> , 2010, 44, 8289-94 Capillary thermal desorption unit for near real-time analysis of VOCs at sub-trace levels. Application to the analysis of environmental air contamination and breath samples. <i>Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences</i> , 2009, 877, 1472-8 Separation of some platinum group metal chelates with 8-hydroxyquinoline by various high-performance liquid chromatographic methods. <i>Journal of Chromatography A</i> , 2000, 871, 217-26 THE SEPARATION OF Au(III) AND Pd(II) IN HYDROCHLORIC ACID SOLUTIONS BY STRONG ANION TYPE II EXCHANGE RESINS: THE EFFECT OF COUNTER ION CONCENTRATION AND TEMPERATURE. <i>Solvent Extraction and Ion Exchange</i> , 2000, 18, 1199-1217 The evaluation of different sorbents for the preconcentration of phenoxyacetic acid herbicides and their metabolites from soils. <i>Journal of Chromatography A</i> , 2005, 1099, 55-63 Sorbent-packed needle microextraction trap for synthetic musks determination in wastewater samples. <i>Talanta</i> , 2015, 132, 548-56 Methylxanthine Content in Commonly Consumed Foods in Spain and Determination of Its Intake during Consumption. <i>Foods</i> , 2017, 6, Effects of packing density, flow and humidity on the performance of needle trap devices. <i>Journal of Chromatography A</i> , 2014, 1369, 18-25 Assessment of the effect of UV and chlorination in the transformation of fragrances in aqueous samples. <i>Chemosphere</i> , 2015, 125, 25-32 Ethyl-bridged hybrid column as an efficient alternative for HPLC analysis of plasma amino acids by pre-column derivatizat	The speciation of rhodium(III) in hydrochloric acid media by capillary zone electrophoresis. <i>Talanta</i> , 62 2002, 56, 1061-71 Odour-causing organic compounds in wastewater treatment plants: evaluation of headspace solid-phase microextraction as a concentration technique. <i>Journal of Chromatography A</i> , 2011, 1218, 4863-8 Assessment of environmental tobacco smoke contamination in public premises: significance of 2,5-dimethylfuran as an effective marker. <i>Environmental Science Bomp, Technology</i> , 2010, 44, 8289-94 Capillary thermal desorption unit for near real-time analysis of VOCs at sub-trace levels. Application to the analysis of environmental air contamination and breath samples. <i>Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences</i> , 2009, 877, 1472-8 Separation of some platinum group metal chelates with 8-hydroxyquinoline by various high-performance liquid chromatographic methods. <i>Journal of Chromatography A</i> , 2000, 871, 217-26 THE SEPARATION OF Au(III) AND Pd(II) IN HYDROCHLORIC ACID SOLUTIONS BY STRONG ANION TYPE II EXCHANGE RESINS: THE EFFECT OF COUNTER ION CONCENTRATION AND TEMPERATURE. <i>Solvent Extraction and Ion Exchange</i> , 2000, 18, 1199-1217 The evaluation of different sorbents for the preconcentration of phenoxyacetic acid herbicides and their metabolites from soils. <i>Journal of Chromatography A</i> , 2005, 1099, 55-63 Sorbent-packed needle microextraction trap for synthetic musks determination in wastewater samples. <i>Talanta</i> , 2015, 132, 548-56 Methylxanthine Content in Commonly Consumed Foods in Spain and Determination of Its Intake during Consumption. <i>Foods</i> , 2017, 6, Effects of packing density, flow and humidity on the performance of needle trap devices. <i>Journal of Chromatography A</i> , 2014, 1369, 18-25 Assessment of the effect of UV and chlorination in the transformation of fragrances in aqueous samples. <i>Chemosphere</i> , 2015, 125, 25-32 Ethyl-bridged hybrid column as an efficient alternative for HPLC analysis of plasma amino acids by pre-column derivatiz

19	Estimating Detection Limits in Chromatography from Calibration Data: Ordinary Least Squares Regression vs. Weighted Least Squares. <i>Separations</i> , 2018 , 5, 49	3.1	9
18	Development of a method for the monitoring of odor-causing compounds in atmospheres surrounding wastewater treatment plants. <i>Journal of Separation Science</i> , 2013 , 36, 1621-8	3.4	8
17	Biological and Psychological Factors Associated With Smoking Abstinence Six Years Post-Stroke. <i>Nicotine and Tobacco Research</i> , 2018 , 20, 1182-1188	4.9	7
16	Development of an Ion-Pairing Liquid Chromatography Method for the Determination of Phenoxyacetic Herbicides and Their Main Metabolites: Application to the Analysis of Soil Samples. <i>Chromatographia</i> , 2006 , 63, 109-115	2.1	7
15	Simple and Fast Methods Based on Solid-Phase Extraction Coupled to Liquid Chromatography with UV Detection for the Monitoring of Caffeine in Natural, and Wastewater as Marker of Anthropogenic Impact. <i>ISRN Chromatography</i> , 2012 , 2012, 1-7		6
14	Ordinary Least Squares with Laboratory Calibrations: A Practical Way to Show Students that This Fitting Model may Easily Yield Biased Results When Used Indiscriminately 2017 , 5, 1-8		5
13	Evaluation of matrix effects in the analysis of volatile organic compounds in whole blood with solid-phase microextraction. <i>Journal of Separation Science</i> , 2013 , 36, 3776-82	3.4	4
12	Linear calibrations in chromatography: The incorrect use of ordinary least squares for determinations at low levels, and the need to redefine the limit of quantification with this regression model. <i>Journal of Separation Science</i> , 2020 , 43, 2708-2717	3.4	4
11	Capillary Electrophoresis of Water-Soluble Vitamins: An Undergraduate Experiment. <i>The Chemical Educator</i> , 2002 , 7, 23-26		3
10	Evaluation of long-term rt-PA effects on bEnd.3 endothelial cells under ischemic conditions; changes in ZO-1 expression and glycosylation of the bradykinin B2 receptor. <i>Thrombosis Research</i> , 2020 , 187, 1-8	8.2	3
9	2,5-Dimethylfuran as a Validated Biomarker of Smoking Status. <i>Nicotine and Tobacco Research</i> , 2019 , 21, 828-834	4.9	3
8	Sequential discriminant classification of environments with different levels of exposure to tobacco smoke. <i>Science of the Total Environment</i> , 2014 , 490, 899-904	10.2	2
7	A simple and efficient method for the determination of pollutant phenols in soils with high levels of organic matter. <i>International Journal of Environmental Analytical Chemistry</i> , 2009 , 89, 293-304	1.8	2
6	Use of Control Charts and Scientific Critical Thinking in Experimental Laboratory Courses: How They Help Students to Detect and Solve Systematic Errors. <i>Journal of Chemical Education</i> , 2021 , 98, 1822-182	2 8 ·4	2
5	Are basic laboratory skills adequately acquired by undergraduate science students? How control quality methodologies applied to laboratory lessons may help us to find the answer <i>Analytical and Bioanalytical Chemistry</i> , 2022 , 1	4.4	2
4	Cav-1 Protein Levels in Serum and Infarcted Brain Correlate with Hemorrhagic Volume in a Mouse Model of Thromboembolic Stroke, Independently of rt-PA Administration <i>Molecular Neurobiology</i> , 2022 , 59, 1320	6.2	1
3	Evaluation and optimization of the derivatization reaction conditions of glyphosate and aminomethylphosphonic acid with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate using reversed-phase liquid chromatography. <i>Journal of Separation Science</i> , 2020 , 43, 3931-3939	3.4	1
2	Air and breath analysis for the assessment of exposure to solvent emissions in university chemistry laboratories. <i>Atmospheric Pollution Research</i> , 2019 , 10, 1795-1802	4.5	O

LIST OF PUBLICATIONS

The inadequate use of the determination coefficient in analytical calibrations: How other parameters can assess the goodness-of-fit more adequately. *Journal of Separation Science*, **2021**, 44, 4431

3.4 0