
Sofia I V Sousa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4377897/publications.pdf Version: 2024-02-01

SOFIA IV SOUSA

#	Article	lF	CITATIONS
1	Multiple linear regression and artificial neural networks based on principal components to predict ozone concentrations. Environmental Modelling and Software, 2007, 22, 97-103.	4.5	380
2	PortoLivingLab: An IoT-Based Sensing Platform for Smart Cities. IEEE Internet of Things Journal, 2018, 5, 523-532.	8.7	149
3	Management of air quality monitoring using principal component and cluster analysis—Part I: SO2 and PM10. Atmospheric Environment, 2008, 42, 1249-1260.	4.1	121
4	The activity-based methodology to assess ship emissions - A review. Environmental Pollution, 2017, 231, 87-103.	7.5	102
5	Management of air quality monitoring using principal component and cluster analysis—Part II: CO, NO2 and O3. Atmospheric Environment, 2008, 42, 1261-1274.	4.1	82
6	Indoor air quality in urban nurseries at Porto city: Particulate matter assessment. Atmospheric Environment, 2014, 84, 133-143.	4.1	70
7	Selection and validation of parameters in multiple linear and principal component regressions. Environmental Modelling and Software, 2008, 23, 50-55.	4.5	66
8	Influence of atmospheric ozone, PM10 and meteorological factors on the concentration of airborne pollen and fungal spores. Atmospheric Environment, 2008, 42, 7452-7464.	4.1	66
9	Assessment of shipping emissions on four ports of Portugal. Environmental Pollution, 2017, 231, 1370-1379.	7.5	60
10	Health effects of ozone focusing on childhood asthma: What is now known – a review from an epidemiological point of view. Chemosphere, 2013, 90, 2051-2058.	8.2	52
11	Quantifying indoor air quality determinants in urban and rural nursery and primary schools. Environmental Research, 2019, 176, 108534.	7.5	51
12	Prediction of ozone concentrations in Oporto city with statistical approaches. Chemosphere, 2006, 64, 1141-1149.	8.2	48
13	Contribution of anthropogenic pollutants to the increase of tropospheric ozone levels in the Oporto Metropolitan Area, Portugal since the 19th century. Environmental Pollution, 2006, 140, 516-524.	7.5	46
14	The microenvironmental modelling approach to assess children's exposure to air pollution – A review. Environmental Research, 2014, 135, 317-332.	7.5	45
15	Children's exposure to indoor air in urban nurseries-part I: CO2 and comfort assessment. Environmental Research, 2015, 140, 1-9.	7.5	45
16	Short-term effects of air pollution on respiratory morbidity at Rio de Janeiro — Part II: Health assessment. Environment International, 2012, 43, 1-5.	10.0	40
17	Potentialities of quantile regression to predict ozone concentrations. Environmetrics, 2009, 20, 147-158.	1.4	39
18	Children's exposure to indoor air in urban nurseries – Part II: Gaseous pollutants' assessment. Environmental Research, 2015, 142, 662-670.	7.5	39

SOFIA I V SOUSA

#	Article	IF	CITATIONS
19	Particulate matter in rural and urban nursery schools in Portugal. Environmental Pollution, 2015, 202, 7-16.	7.5	37
20	Environmental and social valuation of shipping emissions on four ports of Portugal. Journal of Environmental Management, 2019, 235, 62-69.	7.8	35
21	Indoor air pollution on nurseries and primary schools: impact on childhood asthma – study protocol. BMC Public Health, 2012, 12, 435.	2.9	34
22	Prediction of the Daily Mean PM10 Concentrations Using Linear Models. American Journal of Environmental Sciences, 2008, 4, 445-453.	0.5	33
23	Identification and origin of nocturnal ozone maxima at urban and rural areas of Northern Portugal – Influence of horizontal transport. Atmospheric Environment, 2011, 45, 942-956.	4.1	30
24	Impact of COVID-19 Pandemic on Air Quality: A Systematic Review. International Journal of Environmental Research and Public Health, 2022, 19, 1950.	2.6	27
25	Impact of indoor air pollution in nursery and primary schools on childhood asthma. Science of the Total Environment, 2020, 745, 140982.	8.0	26
26	Shipping emissions in the Iberian Peninsula and the impacts on air quality. Atmospheric Chemistry and Physics, 2020, 20, 9473-9489.	4.9	26
27	Ozone exposure and its influence on the worsening of childhood asthma. Allergy: European Journal of Allergy and Clinical Immunology, 2009, 64, 1046-1055.	5.7	24
28	Gaseous pollutants on rural and urban nursery schools in Northern Portugal. Environmental Pollution, 2016, 208, 2-15.	7.5	24
29	Children's Exposure to Radon in Nursery and Primary Schools. International Journal of Environmental Research and Public Health, 2016, 13, 386.	2.6	22
30	Review of low-cost sensors for indoor air quality: Features and applications. Applied Spectroscopy Reviews, 2022, 57, 747-779.	6.7	21
31	Estimating the health and economic burden of shipping related air pollution in the Iberian Peninsula. Environment International, 2021, 156, 106763.	10.0	19
32	Spirometric tests to assess the prevalence of childhood asthma at Portuguese rural areas: Influence of exposure to high ozone levels. Environment International, 2011, 37, 474-478.	10.0	17
33	Health economic assessment of a shift to active transport. Environmental Pollution, 2020, 258, 113745.	7.5	17
34	Evaluation of Low-Cost Mitigation Measures Implemented to Improve Air Quality in Nursery and Primary Schools. International Journal of Environmental Research and Public Health, 2017, 14, 585.	2.6	14
35	Radon in Indoor Air: Towards Continuous Monitoring. Sustainability, 2022, 14, 1529.	3.2	13
36	Evidence of Air and Surface Contamination with SARS-CoV-2 in a Major Hospital in Portugal.	2.6	13

SOFIA I V SOUSA

#	Article	IF	CITATIONS
37	Asthma prevalence and risk factors in early childhood at Northern Portugal. Revista Portuguesa De Pneumologia, 2016, 22, 146-150.	0.7	12
38	Can data reliability of low-cost sensor devices for indoor air particulate matter monitoring be improved? – An approach using machine learning. Atmospheric Environment, 2022, 286, 119251.	4.1	12
39	Short-term effects of air pollution on respiratory morbidity at Rio de Janeiro — PART I: Air Pollution Assessment. Environment International, 2012, 44, 18-25.	10.0	10
40	Radon Levels in Nurseries and Primary Schools in <i>Bragança</i> District—Preliminary Assessment. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2015, 78, 805-813.	2.3	10
41	Identification of Regions with High Ozone Concentrations Aiming the Impact Assessment on Childhood Asthma. Human and Ecological Risk Assessment (HERA), 2008, 14, 610-622.	3.4	9
42	Calculating a Drop in Carbon Emissions in the Strait of Gibraltar (Spain) from Domestic Shipping Traffic Caused by the COVID-19 Crisis. Sustainability, 2020, 12, 10368.	3.2	9
43	Indoor air fungus bioaerosols and comfort index in day care child centers. Toxin Reviews, 2017, 36, 125-131.	3.4	8
44	The Epidemiology of Blood-Contaminated Needlestick Injuries Among Veterinarians in Portugal. Journal of Agromedicine, 2015, 20, 160-166.	1.5	7
45	Influence of land-sea breezes on nocturnal ozone maxima observed in urban sites. International Journal of Environment and Waste Management, 2010, 6, 293.	0.3	6
46	Indoor PM ₁₀ and PM _{2.5} at Nurseries and Primary Schools. Advanced Materials Research, 0, 433-440, 385-390.	0.3	6
47	Asthma prevalence in Portuguese preschool children: The latest scientific evidence. Revista Portuguesa De Pneumologia, 2016, 22, 293-295.	0.7	5
48	Detection of SARS-CoV-2 in the Indoor and Outdoor Areas of Urban Public Transport Systems of Three Major Cities of Portugal in 2021. International Journal of Environmental Research and Public Health, 2022, 19, 5955.	2.6	5
49	Health and Economic Burden of the 2017 Portuguese Extreme Wildland Fires on Children. International Journal of Environmental Research and Public Health, 2022, 19, 593.	2.6	4
50	Asthma in urban and rural pre―and primary schoolchildren according to the latest GINA definition. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 1771-1776.	5.7	3
51	CHILDREN'S EXPOSURE TO INDOOR AIR IN SCHOOLS: IMPACT ON WHEEZING. , 2019, , .		3
52	HEALTH AND ECONOMIC IMPACTS OF OZONE SHIP-RELATED AIR POLLUTION IN PORTUGAL. WIT Transactions on Ecology and the Environment, 2019, , .	0.0	2
53	Bioactive Nano-Filters to Control Legionella on Indoor Air. Advanced Materials Research, 2012, 506, 23-26.	0.3	1
54	Heterogeneous impacts of mobility restrictions on air quality in the State of Sao Paulo during the COVID-19 pandemic. Environmental Pollution, 2022, 300, 118984.	7.5	1

SOFIA I V SOUSA

#	Article	IF	CITATIONS
55	IMPACT OF COVID-19 PANDEMIC ON AIR QUALITY IN A TOURISTIC REGION. WIT Transactions on Ecology and the Environment, 2021, , .	0.0	1
56	INDOOR VOC CONCENTRATIONS AT NURSERY AND PRIMARY SCHOOLS: IMPACT OF COVID-19 PREVENTIVE MEASURES. WIT Transactions on Ecology and the Environment, 2021, , .	0.0	1
57	Poster 18 Principal component and multiple linear regressions to predict ozone concentrations. Developments in Environmental Science, 2007, 6, 790-792.	0.5	Ο
58	Prediction of the next day maximum ozone concentration using multiple linear and principal component regressions. WIT Transactions on Ecology and the Environment, 2006, , .	0.0	0
59	HEALTH IMPACTS OF PM2.5 AND NO2 SHIP-RELATED AIR POLLUTION IN MATOSINHOS MUNICIPALITY, PORTUGAL. WIT Transactions on Ecology and the Environment, 2021, , .	0.0	Ο
60	FUNCTIONAL GROUPS CHARACTERISATION OF INDOOR PARTICULATE MATTER IN SCHOOLS. WIT Transactions on Ecology and the Environment, 2021, , .	0.0	0