List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4377445/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A 3-year field measurement of methane and nitrous oxide emissions from rice paddies in China: Effects of water regime, crop residue, and fertilizer application. Global Biogeochemical Cycles, 2005, 19, n/a-n/a.	4.9	611
2	Nitrous oxide emissions as influenced by amendment of plant residues with different C:N ratios. Soil Biology and Biochemistry, 2004, 36, 973-981.	8.8	485
3	Grazing-induced reduction of natural nitrous oxide release from continental steppe. Nature, 2010, 464, 881-884.	27.8	254
4	Quantifying direct N2O emissions in paddy fields during rice growing season in mainland China: Dependence on water regime. Atmospheric Environment, 2007, 41, 8030-8042.	4.1	248
5	Quantification of N2O fluxes from soil–plant systems may be biased by the applied gas chromatograph methodology. Plant and Soil, 2008, 311, 211-234.	3.7	248
6	Re-quantifying the emission factors based on field measurements and estimating the direct N2O emission from Chinese croplands. Global Biogeochemical Cycles, 2004, 18, n/a-n/a.	4.9	235
7	Modeling greenhouse gas emissions from rice-based production systems: Sensitivity and upscaling. Global Biogeochemical Cycles, 2004, 18, n/a-n/a.	4.9	233
8	Impacts of soil moisture on nitrous oxide emission from croplands: a case study on the rice-based agro-ecosystem in Southeast China. Chemosphere, 2000, 2, 207-224.	1.2	206
9	Effects of irrigation, fertilization and crop straw management on nitrous oxide and nitric oxide emissions from a wheat–maize rotation field in northern China. Agriculture, Ecosystems and Environment, 2011, 140, 226-233.	5.3	195
10	CO2 emission in an intensively cultivated loam as affected by long-term application of organic manure and nitrogen fertilizer. Soil Biology and Biochemistry, 2007, 39, 669-679.	8.8	164
11	Nitrous oxide emissions from an intensively cultivated maize–wheat rotation soil in the North China Plain. Science of the Total Environment, 2007, 373, 501-511.	8.0	155
12	Effects of soil moisture and temperature on CO2 and CH4 soil–atmosphere exchange of various land use/cover types in a semi-arid grassland in Inner Mongolia, China. Soil Biology and Biochemistry, 2010, 42, 773-787.	8.8	153
13	The Asian Nitrogen Cycle Case Study. Ambio, 2002, 31, 79-87.	5.5	151
14	Effects of nitrification inhibitors (DCD and DMPP) on nitrous oxide emission, crop yield and nitrogen uptake in a wheat–maize cropping system. Biogeosciences, 2013, 10, 2427-2437.	3.3	146
15	Annual emissions of nitrous oxide and nitric oxide from a wheat–maize cropping system on a silt loam calcareous soil in the North China Plain. Soil Biology and Biochemistry, 2012, 48, 10-19.	8.8	145
16	NET PRIMARY PRODUCTION OF CHINESE CROPLANDS FROM 1950 TO 1999., 2007, 17, 692-701.		142
17	Effects of environmental factors on N2O emission from and CH4 uptake by the typical grasslands in the Inner Mongolia. Chemosphere, 2005, 58, 205-215.	8.2	140
18	A 3-year record of N2O and CH4 emissions from a sandy loam paddy during rice seasons as affected by different nitrogen application rates. Agriculture, Ecosystems and Environment, 2012, 152, 1-9.	5.3	139

#	Article	IF	CITATIONS
19	N2O, CH4 and CO2 emissions from seasonal tropical rainforests and a rubber plantation in Southwest China. Plant and Soil, 2006, 289, 335-353.	3.7	136
20	Modeling methane emission from rice paddies with various agricultural practices. Journal of Geophysical Research, 2004, 109, .	3.3	110
21	Nitrous oxide and nitric oxide emissions from an irrigated cotton field in Northern China. Plant and Soil, 2010, 332, 123-134.	3.7	108
22	N balance and cycling of Inner Mongolia typical steppe: a comprehensive case study of grazing effects. Ecological Monographs, 2013, 83, 195-219.	5.4	105
23	Direct emission factor for NO from rice–winter wheat rotation systems in southeast China. Atmospheric Environment, 2005, 39, 4755-4765.	4.1	103
24	Fluxes of nitrous oxide, methane and carbon dioxide during freezing–thawing cycles in an Inner Mongolian steppe. Plant and Soil, 2008, 308, 105-117.	3.7	103
25	Annual methane uptake by temperate semiarid steppes as regulated by stocking rates, aboveground plant biomass and topsoil air permeability. Global Change Biology, 2011, 17, 2803-2816.	9.5	103
26	Effects of organic matter incorporation on nitrous oxide emissions from rice-wheat rotation ecosystems in China. Plant and Soil, 2010, 327, 315-330.	3.7	100
27	Responses of N ₂ O and CH ₄ fluxes to fertilizer nitrogen addition rates in an irrigated wheat-maize cropping system in northern China. Biogeosciences, 2012, 9, 839-850.	3.3	99
28	An inventory of N2O emissions from agriculture in China using precipitation-rectified emission factor and background emission. Chemosphere, 2006, 65, 1915-1924.	8.2	98
29	Tillage and crop residue management significantly affects N-trace gas emissions during the non-rice season of a subtropical rice-wheat rotation. Soil Biology and Biochemistry, 2009, 41, 2131-2140.	8.8	98
30	Comparison between static chamber and tunable diode laser-based eddy covariance techniques for measuring nitrous oxide fluxes from a cotton field. Agricultural and Forest Meteorology, 2013, 171-172, 9-19.	4.8	97
31	Atmospheric CO ₂ enrichment facilitates cation release from soil. Ecology Letters, 2010, 13, 284-291.	6.4	96
32	Fluxes of methane and nitrous oxide in water-saving rice production in north China. Nutrient Cycling in Agroecosystems, 2007, 77, 293-304.	2.2	94
33	Effects of increasing precipitation and nitrogen deposition on CH4 and N2O fluxes and ecosystem respiration in a degraded steppe in Inner Mongolia, China. Geoderma, 2013, 192, 335-340.	5.1	90
34	Effects of nitrogen fertilizer on CH4 emission from rice fields: multi-site field observations. Plant and Soil, 2010, 326, 393-401.	3.7	89
35	Winter-grazing reduces methane uptake by soils of a typical semi-arid steppe in Inner Mongolia, China. Atmospheric Environment, 2007, 41, 5948-5958.	4.1	88
36	Nitrous oxide and methane fluxes from a rice–wheat crop rotation under wheat residue incorporation and no-tillage practices. Atmospheric Environment, 2013, 79, 641-649.	4.1	88

#	Article	IF	CITATIONS
37	Effect of ammonium-based, non-sulfate fertilizers on CH4 emissions from a paddy field with a typical Chinese water management regime. Atmospheric Environment, 2011, 45, 1095-1101.	4.1	86
38	Soil Respiration under Maize Crops: Effects of Water, Temperature, and Nitrogen Fertilization. Soil Science Society of America Journal, 2007, 71, 944-951.	2.2	85
39	Carbon dioxide, methane, and nitrous oxide emissions from a rice-wheat rotation as affected by crop residue incorporation and temperature. Advances in Atmospheric Sciences, 2004, 21, 691-698.	4.3	81
40	Straw return reduces yield-scaled N 2 O plus NO emissions from annual winter wheat-based cropping systems in the North China Plain. Science of the Total Environment, 2017, 590-591, 174-185.	8.0	79
41	Nitrogen-regulated effects of free-air CO2 enrichment on methane emissions from paddy rice fields. Global Change Biology, 2006, 12, 1717-1732.	9.5	77
42	Urban stress-induced biogenic VOC emissions and SOA-forming potentials in Beijing. Atmospheric Chemistry and Physics, 2016, 16, 2901-2920.	4.9	74
43	Potential benefits of liming to acid soils on climate change mitigation and food security. Global Change Biology, 2021, 27, 2807-2821.	9.5	74
44	Comparison of manual and automated chambers for field measurements of N2O, CH4, CO2 fluxes from cultivated land. Atmospheric Environment, 2009, 43, 1888-1896.	4.1	73
45	Assessing biogeochemical effects and best management practice for a wheat–maize cropping system using the DNDC model. Biogeosciences, 2014, 11, 91-107.	3.3	73
46	Conversion from rice to vegetable production increases N 2 O emission via increased soil organic matter mineralization. Science of the Total Environment, 2017, 583, 190-201.	8.0	71
47	Comparison of manual and automatic methods for measurement of methane emission from rice paddy fields. Advances in Atmospheric Sciences, 1998, 15, 569-579.	4.3	69
48	Nitrous oxide and methane emissions from a subtropical rice–rapeseed rotation system in China: A 3-year field case study. Agriculture, Ecosystems and Environment, 2015, 212, 297-309.	5.3	69
49	Global mapping of crop-specific emission factors highlights hotspots of nitrous oxide mitigation. Nature Food, 2021, 2, 886-893.	14.0	68
50	Estimates of methane emissions from Chinese rice paddies by linking a model to GIS database. Acta Ecologica Sinica, 2006, 26, 980-987.	1.9	67
51	Microbial N Turnover and N-Oxide (N2O/NO/NO2) Fluxes in Semi-arid Grassland of Inner Mongolia. Ecosystems, 2007, 10, 623-634.	3.4	67
52	Spatially explicit regionalization of airborne flux measurements using environmental response functions. Biogeosciences, 2013, 10, 2193-2217.	3.3	66
53	Drip irrigation or reduced N-fertilizer rate can mitigate the high annual N2O+NO fluxes from Chinese intensive greenhouse vegetable systems. Atmospheric Environment, 2019, 212, 183-193.	4.1	66
54	Progressive nitrogen limitation across the Tibetan alpine permafrost region. Nature Communications, 2020, 11, 3331.	12.8	63

#	Article	IF	CITATIONS
55	Measurement of N ₂ , N ₂ O, NO, and CO ₂ Emissions from Soil with the Gas-Flow-Soil-Core Technique. Environmental Science & amp; Technology, 2011, 45, 6066-6072.	10.0	62
56	Effects of nitrate concentration on the denitrification potential of a calcic cambisol and its fractions of N2, N2O and NO. Plant and Soil, 2013, 363, 175-189.	3.7	60
57	Nitrous oxide emissions and nitrate leaching from a rain-fed wheat-maize rotation in the Sichuan Basin, China. Plant and Soil, 2013, 362, 149-159.	3.7	60
58	Effects of elevated CO2and N fertilization on CH4emissions from paddy rice fields. Global Biogeochemical Cycles, 2004, 18, n/a-n/a.	4.9	57
59	Feedback of grazing on gross rates of N mineralization and inorganic N partitioning in steppe soils of Inner Mongolia. Plant and Soil, 2011, 340, 127-139.	3.7	57
60	Regulatory effects of soil properties on background N2O emissions from agricultural soils in China. Plant and Soil, 2007, 295, 53-65.	3.7	56
61	Soilâ€atmosphere exchange potential of NO and N ₂ O in different land use types of Inner Mongolia as affected by soil temperature, soil moisture, freezeâ€thaw, and dryingâ€wetting events. Journal of Geophysical Research, 2010, 115, .	3.3	56
62	Two-year simultaneous records of N2O and NO fluxes from a farmed cropland in the northern China plain with a reduced nitrogen addition rate by one-third. Agriculture, Ecosystems and Environment, 2013, 178, 39-50.	5.3	55
63	Organically fertilized tea plantation stimulates N ₂ O emissions and lowers NO fluxes in subtropical China. Biogeosciences, 2015, 12, 5915-5928.	3.3	55
64	Characteristics of annual nitrous and nitric oxide emissions from major cereal crops in the North China Plain under alternative fertilizer management. Agriculture, Ecosystems and Environment, 2015, 207, 67-78.	5.3	55
65	Improving rice production sustainability by reducing water demand and greenhouse gas emissions with biodegradable films. Scientific Reports, 2017, 7, 39855.	3.3	55
66	Comparison between eddy covariance and automatic chamber techniques for measuring net ecosystem exchange of carbon dioxide in cotton and wheat fields. Biogeosciences, 2013, 10, 6865-6877.	3.3	53
67	Oxygen and substrate availability interactively control the temperature sensitivity of CO2 and N2O emission from soil. Biology and Fertility of Soils, 2014, 50, 775-783.	4.3	53
68	Using a modified DNDC model to estimate N2O fluxes from semi-arid grassland in China. Soil Biology and Biochemistry, 2003, 35, 615-620.	8.8	52
69	Characteristics of multiple-year nitrous oxide emissions from conventional vegetable fields in southeastern China. Journal of Geophysical Research, 2011, 116, .	3.3	50
70	Grazing effects on the greenhouse gas balance of a temperate steppe ecosystem. Nutrient Cycling in Agroecosystems, 2012, 93, 357-371.	2.2	50
71	A comparison between measured and modeled N2O emissions from Inner Mongolian semi-arid grassland. Plant and Soil, 2003, 255, 513-528.	3.7	49
72	Contribution of plants to N 2 O emissions in soil-winter wheat ecosystem: pot and field experiments. Plant and Soil, 2005, 269, 205-211.	3.7	49

#	Article	IF	CITATIONS
73	Quantifying net ecosystem carbon dioxide exchange of a shortâ€plant cropland with intermittent chamber measurements. Global Biogeochemical Cycles, 2008, 22, .	4.9	49
74	Background nitrous oxide emissions from croplands in China in the year 2000. Plant and Soil, 2009, 320, 307-320.	3.7	47
75	Water-saving ground cover rice production system reduces net greenhouse gas fluxes in an annual rice-based cropping system. Biogeosciences, 2014, 11, 6221-6236.	3.3	47
76	Nitric oxide emissions from conventional vegetable fields in southeastern China. Atmospheric Environment, 2009, 43, 2762-2769.	4.1	46
77	Modeling nitrogen loadings from agricultural soils in southwest China with modified DNDC. Journal of Geophysical Research, 2011, 116, .	3.3	46
78	The increasing distribution area of zokor mounds weaken greenhouse gas uptakes by alpine meadows in the Qinghai–Tibetan Plateau. Soil Biology and Biochemistry, 2014, 71, 105-112.	8.8	45
79	Annual emissions of nitrous oxide and nitric oxide from rice-wheat rotation and vegetable fields: a case study in the Tai-Lake region, China. Plant and Soil, 2012, 360, 37-53.	3.7	44
80	Annual nitric and nitrous oxide fluxes from Chinese subtropical plastic greenhouse and conventional vegetable cultivations. Environmental Pollution, 2015, 196, 89-97.	7.5	44
81	Reducing N2O and NO emissions while sustaining crop productivity in a Chinese vegetable-cereal double cropping system. Environmental Pollution, 2017, 231, 929-941.	7.5	44
82	Seasonal characteristics of nitric oxide emission from a typical Chinese rice-wheat rotation during the non-waterlogged period. Global Change Biology, 2003, 9, 219-227.	9.5	41
83	Spatial variability of N2O, CH4 and CO2 fluxes within the Xilin River catchment of Inner Mongolia, China: a soil core study. Plant and Soil, 2010, 331, 341-359.	3.7	41
84	Modeling nitrogen loading in a small watershed in southwest China using a DNDC model with hydrological enhancements. Biogeosciences, 2011, 8, 2999-3009.	3.3	40
85	Greenhouse gas fluxes and NO release from a Chinese subtropical riceâ€winter wheat rotation system under nitrogen fertilizer management. Journal of Geophysical Research G: Biogeosciences, 2013, 118, 623-638.	3.0	40
86	Importance of point sources on regional nitrous oxide fluxes in semi-arid steppe of Inner Mongolia, China. Plant and Soil, 2007, 296, 209-226.	3.7	39
87	Applicability of the soil gradient method for estimating soil–atmosphere CO ₂ , CH ₄ , and N ₂ O fluxes for steppe soils in Inner Mongolia. Journal of Plant Nutrition and Soil Science, 2011, 174, 359-372.	1.9	38
88	The effects of nitrogen fertilization on N2O emissions from a rubber plantation. Scientific Reports, 2016, 6, 28230.	3.3	38
89	Benefit of using biodegradable film on rice grain yield and N use efficiency in ground cover rice production system. Field Crops Research, 2017, 201, 52-59.	5.1	38
90	Static opaque chamber-based technique for determination of net exchange of CO2 between terrestrial ecosystem and atmosphere. Science Bulletin, 2004, 49, 381-388.	1.7	37

#	Article	IF	CITATIONS
91	Urea deep placement reduces yield-scaled greenhouse gas (CH4 and N2O) and NO emissions from a ground cover rice production system. Scientific Reports, 2017, 7, 11415.	3.3	36
92	Effects of nitrogen on the ecosystem respiration, CH4 and N2O emissions to the atmosphere from the freshwater marshes in northeast China. Environmental Geology, 2007, 52, 529-539.	1.2	35
93	Nitrous oxide emissions from an agro-pastoral ecotone of northern China depending on land uses. Agriculture, Ecosystems and Environment, 2015, 213, 241-251.	5.3	35
94	Modeling ammonia volatilization following urea application to winter cereal fields in the United Kingdom by a revised biogeochemical model. Science of the Total Environment, 2019, 660, 1403-1418.	8.0	35
95	Methane and nitrous oxide emissions from three paddy rice based cultivation systems in Southwest China. Advances in Atmospheric Sciences, 2006, 23, 415-424.	4.3	34
96	Seasonality of soil microbial nitrogen turnover in continental steppe soils of Inner Mongolia. Ecosphere, 2012, 3, 1-18.	2.2	34
97	Quantification of year-round methane and nitrous oxide fluxes in a typical alpine shrub meadow on the Qinghai-Tibetan Plateau. Agriculture, Ecosystems and Environment, 2018, 255, 27-36.	5.3	34
98	An urban polluted river as a significant hotspot for water–atmosphere exchange of CH4 and N2O. Environmental Pollution, 2020, 264, 114770.	7.5	34
99	Residue incorporation and N fertilization affect the response of soil nematodes to the elevated CO2 in a Chinese wheat field. Soil Biology and Biochemistry, 2009, 41, 1497-1503.	8.8	33
100	Modeling impacts of fertilization alternatives on nitrous oxide and nitric oxide emissions from conventional vegetable fields in southeastern China. Atmospheric Environment, 2013, 81, 642-650.	4.1	33
101	Modeling ammonia volatilization following the application of synthetic fertilizers to cultivated uplands with calcareous soils using an improved DNDC biogeochemistry model. Science of the Total Environment, 2019, 660, 931-946.	8.0	33
102	Effects of irrigation on nitrous oxide, methane and carbon dioxide fluxes in an Inner Mongolian steppe. Advances in Atmospheric Sciences, 2008, 25, 748-756.	4.3	32
103	Annual emissions of greenhouse gases from sheepfolds in Inner Mongolia. Plant and Soil, 2011, 340, 291-301.	3.7	32
104	Comparison of the DNDC, LandscapeDNDC and IAP-N-GAS models for simulating nitrous oxide and nitric oxide emissions from the winter wheat–summer maize rotation system. Agricultural Systems, 2015, 140, 1-10.	6.1	32
105	Modeling N2O emissions from steppe in Inner Mongolia, China, with consideration of spring thaw and grazing intensity. Plant and Soil, 2012, 350, 297-310.	3.7	31
106	Net ecosystem carbon and greenhouse gas budgets in fiber and cereal cropping systems. Science of the Total Environment, 2019, 647, 895-904.	8.0	31
107	Annual N2O emissions from conventionally grazed typical alpine grass meadows in the eastern Qinghai–Tibetan Plateau. Science of the Total Environment, 2018, 625, 885-899.	8.0	30
108	Quantitative dependence of methane emission on soil properties. Nutrient Cycling in Agroecosystems, 2002, 64, 157-167.	2.2	29

#	Article	IF	CITATIONS
109	Stand age amplifies greenhouse gas and NO releases following conversion of rice paddy to tea plantations in subtropical China. Agricultural and Forest Meteorology, 2018, 248, 386-396.	4.8	29
110	Effects of soil temperature on nitric oxide emission from a typical Chinese rice-wheat rotation during the non-waterlogged period. Global Change Biology, 2003, 9, 601-611.	9.5	28
111	Diel pattern of soil respiration in N-amended soil under maize cultivation. Atmospheric Environment, 2006, 40, 3294-3305.	4.1	28
112	Growing season methane budget of an Inner Mongolian steppe. Atmospheric Environment, 2009, 43, 3086-3095.	4.1	28
113	Dinitrogen fixation by biological soil crusts in an Inner Mongolian steppe. Biology and Fertility of Soils, 2009, 45, 679-690.	4.3	28
114	Reducing nitrous oxide emissions from the global food system. Current Opinion in Environmental Sustainability, 2014, 9-10, 55-64.	6.3	28
115	Benefits of integrated nutrient management on N2O and NO mitigations in water-saving ground cover rice production systems. Science of the Total Environment, 2019, 646, 1155-1163.	8.0	28
116	Carbon dioxide emission from temperate semiarid steppe during the non-growing season. Atmospheric Environment, 2013, 64, 141-149.	4.1	27
117	The effect of planting density on carbon dioxide, methane and nitrous oxide emissions from a cold paddy field in the Sanjiang Plain, northeast China. Agriculture, Ecosystems and Environment, 2013, 178, 64-70.	5.3	27
118	Increasing grassland degradation stimulates the non-growing season CO2 emissions from an alpine meadow on the Qinghai–Tibetan Plateau. Environmental Science and Pollution Research, 2018, 25, 26576-26591.	5.3	27
119	Mitigation options for methane, nitrous oxide and nitric oxide emissions from agricultural ecosystems. Advances in Atmospheric Sciences, 2000, 17, 83-92.	4.3	26
120	Using field-measured soil N2O fluxes and laboratory scale parameterization of N2O/(N2O+N2) ratios to quantify field-scale soil N2 emissions. Soil Biology and Biochemistry, 2020, 148, 107904.	8.8	26
121	Methane emission from a simulated rice field ecosystem as influenced by hydroquinone and dicyandiamide. Science of the Total Environment, 2000, 263, 243-253.	8.0	25
122	Seasonal variations in soil respiration and temperature sensitivity under three land-use types in hilly areas of the Sichuan Basin. Soil Research, 2008, 46, 727.	1.1	25
123	Field measures of the contribution of root respiration to soil respiration in an alder and cypress mixed plantation by two methods: trenching method and root biomass regression method. European Journal of Forest Research, 2008, 127, 285-291.	2.5	24
124	Three-year measurements of nitrous oxide emissions from cotton and wheat–maize rotational cropping systems. Atmospheric Environment, 2014, 96, 201-208.	4.1	24
125	Annual dynamics of soil gross nitrogen turnover and nitrous oxide emissions in an alpine shrub meadow. Soil Biology and Biochemistry, 2019, 138, 107576.	8.8	24
126	Nitrous oxide emissions from the wheat-growing season in eighteen Chinese paddy soils: an outdoor pot experiment. Biology and Fertility of Soils, 2002, 36, 411-417.	4.3	23

#	Article	IF	CITATIONS
127	Annual methane uptake by typical semiarid steppe in Inner Mongolia. Journal of Geophysical Research, 2010, 115, .	3.3	23
128	Importance of vegetation classes in modeling CH4 emissions from boreal and subarctic wetlands in Finland. Science of the Total Environment, 2016, 572, 1111-1122.	8.0	23
129	Tea-planted soils as global hotspots for N ₂ O emissions from croplands. Environmental Research Letters, 2020, 15, 104018.	5.2	23
130	Ground cover rice production systems increase soil carbon and nitrogen stocks at regional scale. Biogeosciences, 2015, 12, 4831-4840.	3.3	22
131	Annual methane uptake from different land uses in an agro-pastoral ecotone of northern China. Agricultural and Forest Meteorology, 2017, 236, 67-77.	4.8	22
132	Enhanced nitrogen cycling and N2O loss in water-saving ground cover rice production systems (GCRPS). Soil Biology and Biochemistry, 2018, 121, 77-86.	8.8	22
133	Effects of Litter Inputs on N2O Emissions from a Tropical Rainforest in Southwest China. Ecosystems, 2018, 21, 1013-1026.	3.4	22
134	Effect of free-air atmospheric CO2 enrichment on dark respiration of rice plants (Oryza sativa L.). Agriculture, Ecosystems and Environment, 2006, 115, 105-112.	5.3	21
135	Nitric oxide emissions from rice-wheat rotation fields in eastern China: effect of fertilization, soil water content, and crop residue. Plant and Soil, 2010, 336, 87-98.	3.7	21
136	Nitrous oxide emissions during the non-rice growing seasons of two subtropical rice-based rotation systems in southwest China. Plant and Soil, 2014, 383, 401-414.	3.7	21
137	A process-oriented hydro-biogeochemical model enabling simulation of gaseous carbon and nitrogen emissions and hydrologic nitrogen losses from a subtropical catchment. Science of the Total Environment, 2018, 616-617, 305-317.	8.0	21
138	Annual methane emissions from degraded alpine wetlands in the eastern Tibetan Plateau. Science of the Total Environment, 2019, 657, 1323-1333.	8.0	21
139	Long-term grazing effects on soil-atmosphere exchanges of CO2, CH4 and N2O at different grasslands in Inner Mongolia: A soil core study. Ecological Indicators, 2019, 105, 316-328.	6.3	20
140	Characteristics of annual greenhouse gas flux and NO release from alpine meadow and forest on the eastern Tibetan Plateau. Agricultural and Forest Meteorology, 2019, 272-273, 166-175.	4.8	19
141	Soil N intensity as a measure to estimate annual N2O and NO fluxes from natural and managed ecosystems. Current Opinion in Environmental Sustainability, 2020, 47, 1-6.	6.3	19
142	Elevated atmospheric CO ₂ reduces yieldâ€scaled N ₂ O fluxes from subtropical rice systems: Six siteâ€years field experiments. Global Change Biology, 2021, 27, 327-339.	9.5	19
143	The influence of free-air CO2 enrichment on microorganisms of a paddy soil in the rice-growing season. Applied Soil Ecology, 2007, 35, 154-162.	4.3	18
144	Effects of land cover and soil properties on denitrification potential in soils of two semi-arid grasslands in Inner Mongolia, China. Journal of Arid Environments, 2013, 92, 98-101.	2.4	18

XUNHUA ZHENG

#	Article	IF	CITATIONS
145	Influences of observation method, season, soil depth, land use and management practice on soil dissolvable organic carbon concentrations: A meta-analysis. Science of the Total Environment, 2018, 631-632, 105-114.	8.0	18
146	Influences of free-air CO2 enrichment (FACE), nitrogen fertilizer and crop residue incorporation on CH4 emissions from irrigated rice fields. Nutrient Cycling in Agroecosystems, 2012, 93, 373-385.	2.2	17
147	Effects of N Fertilizer Application on Soil N2O Emissions and CH4 Uptake: A Two-Year Study in an Apple Orchard in Eastern China. Atmosphere, 2017, 8, 181.	2.3	17
148	Effects of copper concentration on methane emission from rice soils. Chemosphere, 2005, 58, 185-193.	8.2	15
149	Effects of increasing fertilization rates on nitric oxide emission and nitrogen use efficiency in low carbon calcareous soil. Agriculture, Ecosystems and Environment, 2015, 203, 83-92.	5.3	14
150	Modeling methane emissions from paddy rice fields under elevated atmospheric carbon dioxide conditions. Advances in Atmospheric Sciences, 2010, 27, 100-114.	4.3	13
151	Effects of tillage during the nonwaterlogged period on nitrous oxide and nitric oxide emissions in typical Chinese riceâ€wheat rotation ecosystems. Journal of Geophysical Research, 2010, 115, .	3.3	13
152	Full straw incorporation into a calcareous soil increased N2O emission despite more N2O being reduced to N2 in the winter crop season. Agriculture, Ecosystems and Environment, 2022, 335, 108007.	5.3	13
153	Heavy metal and nutrient concentrations in top- and sub-soils of greenhouses and arable fields in East China – Effects of cultivation years, management, and shelter. Environmental Pollution, 2022, 307, 119494.	7.5	13
154	Dependence of wheat and rice respiration on tissue nitrogen and the corresponding net carbon fixation efficiency under different rates of nitrogen application. Advances in Atmospheric Sciences, 2007, 24, 55-64.	4.3	12
155	Sheepfolds as "hotspots―of nitric oxide (NO) emission in an Inner Mongolian steppe. Agriculture, Ecosystems and Environment, 2009, 134, 136-142.	5.3	12
156	Modeling N2O Emissions from Agricultural Fields in Southeast China. Advances in Atmospheric Sciences, 1999, 16, 581-592.	4.3	11
157	Description and application of a model for simulating regional nitrogen cycling and calculating nitrogen flux. Advances in Atmospheric Sciences, 2008, 25, 181-201.	4.3	11
158	Using a modified DNDC biogeochemical model to optimize field management of a multi-crop (cotton,) Tj ETQq() 0	/Overlock 10
159	Less intensive nitrate leaching from Phaeozems cultivated with maize generally occurs in northeastern China. Agriculture, Ecosystems and Environment, 2021, 310, 107303.	5.3	11
160	Soil clay minerals: An overlooked mediator of gross N transformations in Regosolic soils of subtropical montane landscapes. Soil Biology and Biochemistry, 2022, 168, 108612.	8.8	11
161	Is green tea still â€~green'?. Geo: Geography and Environment, 2016, 3, e00021.	0.8	10
162	Effects of fertilization and stand age on N ₂ O and NO emissions from tea plantations: a site-scale study in a subtropical region using a modified biogeochemical model. Atmospheric Chemistry and Physics, 2020, 20, 6903-6919.	4.9	10

#	Article	IF	CITATIONS
163	A synthesis of nitric oxide emissions across global fertilized croplands from cropâ€specific emission factors. Global Change Biology, 2022, 28, 4395-4408.	9.5	10
164	Applicability of a gas analyzer with dual quantum cascade lasers for simultaneous measurements of N2O, CH4 and CO2 fluxes from cropland using the eddy covariance technique. Science of the Total Environment, 2020, 729, 138784.	8.0	9
165	Automated online measurement of N2, N2O, NO, CO2, and CH4 emissions based on a gas-flow-soil-core technique. Chemosphere, 2013, 93, 2848-2853.	8.2	8
166	A process-based model of N2O emission from a rice-winter wheat rotation agro-ecosystem: Structure, validation and sensitivity. Advances in Atmospheric Sciences, 2010, 27, 137-150.	4.3	7
167	Year-round measurements of nitrous oxide emissions and direct emission factors in extensively managed croplands under an alpine climate. Agricultural and Forest Meteorology, 2019, 274, 18-28.	4.8	7
168	Characteristics of annual N2O and NO fluxes from Chinese urban turfgrasses. Environmental Pollution, 2021, 290, 118017.	7.5	7
169	Responses of CH4 and N2O fluxes to land-use conversion and fertilization in a typical red soil region of southern China. Scientific Reports, 2017, 7, 10571.	3.3	6
170	Annual greenhouse gas emissions from sheepfolds and cattle sheds. Soil Use and Management, 2022, 38, 369-380.	4.9	6
171	N ₂ 0 Emissions from an Apple Orchard in the Coastal Area of Bohai Bay, China. Scientific World Journal, The, 2014, 2014, 1-8.	2.1	4
172	Applicability of an eddy covariance system based on a close-path quantum cascade laser spectrometer for measuring nitrous oxide fluxes from subtropical vegetable fields. Atmospheric and Oceanic Science Letters, 2016, 9, 381-387.	1.3	4
173	Effects of Grazing Pattern on Ecosystem Respiration and Methane Flux in a Sown Pasture in Inner Mongolia, China. Atmosphere, 2019, 10, 5.	2.3	4
174	An open-path ammonia analyzer for eddy covariance flux measurement. Agricultural and Forest Meteorology, 2021, 308-309, 108570.	4.8	4
175	Fertilizer nitrogen loss via N2 emission from calcareous soil following basal urea application of winter wheat. Atmospheric and Oceanic Science Letters, 2019, 12, 91-97.	1.3	3
176	Attempt to correct grassland N2O fluxes biased by the DN-based opaque static chamber measurement. Atmospheric Environment, 2021, 264, 118687.	4.1	3
177	A generic methodological framework for accurately quantifying greenhouse gas footprints of crop cultivation systems. Atmospheric and Oceanic Science Letters, 2018, 11, 15-28.	1.3	2
178	Applicability of a closed-path quantum cascade laser spectrometer for eddy covariance (EC) flux measurements of nitric oxide (NO) over a cropland during a low emission period. Agricultural and Forest Meteorology, 2020, 282-283, 107855.	4.8	2
179	A significant diurnal pattern of ammonia dry deposition to a cropland is detected by an open-path quantum cascade laser-based eddy covariance instrument. Atmospheric Environment, 2022, 278, 119070.	4.1	2
180	Update of a biogeochemical model with process-based algorithms to predict ammonia volatilization from fertilized cultivated uplands and rice paddy fields. Biogeosciences, 2022, 19, 3001-3019.	3.3	2

XUNHUA ZHENG

#	Article	IF	CITATIONS
181	Designing a regional nitrogen cycle module of grassland for the IAP-N model. Advances in Atmospheric Sciences, 2012, 29, 320-332.	4.3	1
182	A new era of China-Germany joint research exploring the climate mystery of Earth. Science Bulletin, 2019, 64, 1733-1736.	9.0	1
183	Drivers of difference in CO2 and CH4 emissions between rubber plantation and tropical rainforest soils. Agricultural and Forest Meteorology, 2021, 304-305, 108391.	4.8	1
184	Nitrous oxide emissions from black soils under a continuous soybean cropping system in northeast China. Journal of Soil Science and Plant Nutrition, 2015, , 0-0.	3.4	0
185	Non-cropping period accounting for over a half of annual nitric oxide releases from cultivated calcareous-soil alpine ecosystems with marginally low emission factors. Atmospheric and Oceanic Science Letters, 2018, 11, 338-344.	1.3	0
186	Characterizing nitric oxide emissions from two typical alpine ecosystems. Journal of Environmental Sciences, 2019, 77, 312-322.	6.1	0
187	An improved process-oriented hydro-biogeochemical model for simulating dynamic fluxes of methane and nitrous oxide in alpine ecosystems with seasonally frozen soils. Biogeosciences, 2021, 18, 4211-4225,	3.3	0