Goran V Janjić

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4377204/publications.pdf

Version: 2024-02-01

		430874	414414
53	1,122	18	32
papers	citations	h-index	g-index
			1256
55	55	55	1356
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Dinuclear platinum(II) complexes as the pattern for phosphate backbone binding: a new perspective for recognition of binding modes to DNA. Journal of Biological Inorganic Chemistry, 2022, 27, 65-79.	2.6	1
2	On the supramolecular outcomes of fluorination of cyclohexane-5-spirohydantoin derivatives. CrystEngComm, 2021, 23, 2606-2622.	2.6	11
3	Na, K-ATPase as a Biological Target for Gold(III) Complexes: A Theoretical and Experimental Approach. Current Medicinal Chemistry, 2021, 28, 4742-4798.	2.4	2
4	Cytotoxic activity and influence on acetylcholinesterase of series dinuclear platinum(II) complexes with aromatic nitrogen-containing heterocyclic bridging ligands: Insights in the mechanisms of action. Chemico-Biological Interactions, 2021, 351, 109708.	4.0	1
5	Supramolecular Perspective of Coordination Effects on Fluorine Interactions. Crystal Growth and Design, 2021, 21, 6129-6142.	3.0	2
6	Recovery of Vanadium (V) Oxyanions by a Magnetic Macroporous Copolymer Nanocomposite Sorbent. Metals, 2021, 11, 1777.	2.3	8
7	Fabrication and characterization of luminescent Pr3+ doped fluorapatite nanocrystals as bioimaging contrast agents. Journal of Luminescence, 2020, 217, 116757.	3.1	21
8	Supramolecular insight into the substitution of sulfur by selenium, based on crystal structures, quantum-chemical calculations and biosystem recognition. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2020, 76, 122-136.	1.1	6
9	Selfâ€Assembly and Biorecognition of a Spirohydantoin Derived from αâ€Tetralone: Interplay between Chirality and Intermolecular Interactions. ChemPlusChem, 2020, 85, 1220-1232.	2.8	3
10	A new acetylcholinesterase allosteric site responsible for binding voluminous negatively charged molecules $\hat{a} \in \text{``the role in the mechanism of AChE inhibition. European Journal of Pharmaceutical Sciences, 2020, 151, 105376.}$	4.0	20
11	New minor groove covering DNA binding mode of dinuclear Pt(II) complexes with various pyridine-linked bridging ligands and dual anticancer-antiangiogenic activities. Journal of Biological Inorganic Chemistry, 2020, 25, 395-409.	2.6	19
12	New Theoretical Insight into Fluorination and Fluorine–Fluorine Interactions as a Driving Force in Crystal Structures. Crystal Growth and Design, 2020, 20, 2943-2951.	3.0	26
13	Influence of C–H/X (X = S, Cl, N, Pt/Pd) Interactions on the Molecular and Crystal Structures of Pt(II) and Pd(II) Complexes with Thiomorpholine-4-carbonitrile: Crystallographic, Thermal, and DFT Study. Crystal Growth and Design, 2020, 20, 3018-3033.	3.0	3
14	Silver-based monomer and coordination polymer with organic thiocyanate ligand: Structural, computational and antiproliferative activity study. Polyhedron, 2019, 173, 114132.	2.2	4
15	Theoretical modeling of sorption of metal ions on amino-functionalized macroporous copolymer in aqueous solution. Journal of Molecular Modeling, 2019, 25, 177.	1.8	3
16	Substituent Effects on the Patterns of Intermolecular Interactions of 3-Alkyl and 3-Cycloalkyl Derivatives of Phenytoin: A Crystallographic and Quantum-Chemical Study. Crystal Growth and Design, 2019, 19, 2163-2174.	3.0	2
17	Design of amino-functionalized chelated macroporous copolymer [poly(GMA-EDGMA)] for the sorption of Cu (II) ions. Journal of the Serbian Chemical Society, 2019, 84, 1391-1404.	0.8	5
18	Influence of hydrogen bonds on edge-to-face interactions between pyridine molecules. Journal of Molecular Modeling, 2018, 24, 60.	1.8	6

#	Article	IF	CITATIONS
19	Positive and negative nano-electrospray mass spectrometry of ruthenated serum albumin supported by docking studies: an integrated approach towards defining metallodrug binding sites on proteins. Metallomics, 2018, 10, 587-594.	2.4	13
20	Synthesis, cytotoxic activity and DNA interaction studies of new dinuclear platinum(<scp>ii</scp>) complexes with an aromatic 1,5-naphthyridine bridging ligand: DNA binding mode of polynuclear platinum(<scp>ii</scp>) complexes in relation to the complex structure. Dalton Transactions, 2018, 47, 15091-15102.	3.3	19
21	Interaction of Au(iii) and Pt(ii) complexes with Na/K-ATPase: experimental and theoretical study of reaction stoichiometry and binding sites. Metallomics, 2018, 10, 1003-1015.	2.4	2
22	Mononuclear silver(I) complexes with 1,7-phenanthroline as potent inhibitors of Candida growth. European Journal of Medicinal Chemistry, 2018, 156, 760-773.	5.5	36
23	Na/K-ATPase as a target for anticancer metal based drugs: insights into molecular interactions with selected gold(<scp>iii</scp>) complexes. Metallomics, 2017, 9, 292-300.	2.4	13
24	Prediction of strong O–H/M hydrogen bonding between water and square-planar Ir and Rh complexes. Physical Chemistry Chemical Physics, 2017, 19, 8657-8660.	2.8	8
25	The influence of oxo-bridged binuclear gold(III) complexes on Na/K-ATPase activity: a joint experimental and theoretical approach. Journal of Biological Inorganic Chemistry, 2017, 22, 819-832.	2.6	7
26	Noncovalent bonding: Stacking interactions of chelate rings of transition metal complexes. Coordination Chemistry Reviews, 2017, 345, 318-341.	18.8	81
27	Mononuclear gold(III) complexes with phenanthroline ligands as efficient inhibitors of angiogenesis: A comparative study with auranofin and sunitinib. Journal of Inorganic Biochemistry, 2017, 174, 156-168.	3.5	22
28	Very Strong Parallel Interactions Between Two Saturated Acyclic Groups Closed with Intramolecular Hydrogen Bonds Forming Hydrogen-Bridged Rings. Crystals, 2016, 6, 34.	2.2	5
29	Coordinating Benzenes Stack Stronger than Noncoordinating Benzenes, even at Large Horizontal Displacements. Crystal Growth and Design, 2016, 16, 4169-4172.	3.0	22
30	The stacking interactions of bipyridine complexes: the influence of the metal ion type on the strength of interactions. Journal of Molecular Modeling, 2016, 22, 30.	1.8	7
31	Preferred Geometries and Energies of Sulfur–Sulfur Interactions in Crystal Structures. Crystal Growth and Design, 2016, 16, 632-639.	3.0	54
32	Gentiana lutea Extracts and their Constituents as Inhibitors of Synaptosomal Ecto-NTPDase. International Journal of Pharmacology, 2016, 12, 272-289.	0.3	5
33	Nature of the water/aromatic parallel alignment interactions. Journal of Computational Chemistry, 2015, 36, 171-180.	3.3	9
34	\ddot{l} f-Hole Interactions of Covalently-Bonded Nitrogen, Phosphorus and Arsenic: A Survey of Crystal Structures. Crystals, 2014, 4, 12-31.	2.2	149
35	Parallel Water/Aromatic Interactions of Nonâ€Coordinated and Coordinated Water. ChemPhysChem, 2014, 15, 2386-2396.	2.1	5
36	What are preferred water–aromatic interactions in proteins and crystal structures of small molecules?. Physical Chemistry Chemical Physics, 2014, 16, 23549-23553.	2.8	16

#	Article	IF	CITATIONS
37	Stacking Interactions between Square-Planar Metal Complexes with 2,2′-Bipyridine Ligands. Analysis of Crystal Structures and Quantum Chemical Calculations. Crystal Growth and Design, 2014, 14, 3880-3889.	3.0	27
38	Crystallographic and ab initio study of pyridine CH–O interactions: linearity of the interactions and influence of pyridine classical hydrogen bonds. CrystEngComm, 2013, 15, 10481.	2.6	30
39	Mutual influence of parallel, CH/O, OH/Ï€ and lone pair/Ï€ interactions in water/benzene/water system. Computational and Theoretical Chemistry, 2013, 1018, 59-65.	2.5	25
40	The influence of water molecule coordination onto the water–aromatic interaction. Strong interactions of water coordinating to a metal ion. CrystEngComm, 2013, 15, 2099.	2.6	15
41	Stacking Interactions of Ni(acac) Chelates with Benzene: Calculated Interaction Energies. ChemPhysChem, 2013, 14, 1797-1800.	2.1	16
42	Influence of supramolecular structures in crystals on parallel stacking interactions between pyridine molecules. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2013, 69, 389-394.	1.1	12
43	The influence of water molecule coordination to a metal ion on water hydrogen bonds. Physical Chemistry Chemical Physics, 2012, 14, 10896.	2.8	46
44	CH/π interactions in metal–porphyrin complexes with pyrrole and chelate rings as hydrogen acceptors. Journal of Inorganic Biochemistry, 2012, 117, 157-163.	3 . 5	11
45	Crystallographic and <i>ab Initio</i> Study of Pyridine Stacking Interactions. Local Nature of Hydrogen Bond Effect in Stacking Interactions. Crystal Growth and Design, 2012, 12, 1060-1063.	3.0	71
46	Water/Aromatic Parallel Alignment Interactions. Significant Interactions at Large Horizontal Displacements. Crystal Growth and Design, 2011, 11, 2680-2683.	3.0	31
47	Are C–Hâ< ⁻ O interactions linear? The case of aromatic CH donors. CrystEngComm, 2011, 13, 5005.	2.6	73
48	Geometries of stacking interactions between phenanthroline ligands in crystal structures of square-planar metal complexes. Journal of Molecular Modeling, 2011, 17, 2083-2092.	1.8	17
49	What Are the Preferred Horizontal Displacements in Parallel Aromatic–Aromatic Interactions? Significant Interactions at Large Displacements. ChemPhysChem, 2011, 12, 3511-3514.	2.1	76
50	Classification of stacking interaction geometries of terpyridyl square-planar complexes in crystal structures. CrystEngComm, 2010, , .	2.6	3
51	Intramolecular MLOH/Ï€ and MLNH/Ï€ interactions in crystal structures of metal complexes. Chemical Papers, 2009, 63, .	2.2	6
52	Parallel alignment of water and aryl ringsâ€"crystallographic and theoretical evidence for the interaction. Chemical Communications, 2008, , 6546.	4.1	46
53	Unravelling conformational and crystal packing preferences of cyclohexane-5-spirohydantoin derivatives incorporating a halogenated benzoyl group. CrystEngComm, 0, , .	2.6	1