
Yumei Feng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4377073/publications.pdf Version: 2024-02-01

YUMEL FENC

#	Article	IF	CITATIONS
1	(Pro)renin Receptor and Blood Pressure Regulation: A Focus on the Central Nervous System. Current Hypertension Reviews, 2022, 18, 101-116.	0.9	3
2	Use of chlorisondamine to assess the neurogenic contribution to blood pressure in mice: An evaluation of method. Physiological Reports, 2021, 9, e14753.	1.7	0
3	(Pro)Renin Receptor in the Hypothalamic Tyrosine Hydroxylase ontaining Neurons Contributes to High Fat Diet Induced Hyperglycemia. FASEB Journal, 2021, 35, .	0.5	0
4	Characterization of Tyrosine Hydroxylaseâ€Positive Neurons Projections from the Paraventricular Nucleus of Hypothalamus to Hindbrain Autonomic Regulatory Centers. FASEB Journal, 2021, 35, .	0.5	0
5	Increased (Pro)renin Receptor Expression in the Hypertensive Human Brain. Frontiers in Physiology, 2020, 11, 606811.	2.8	11
6	Small RNA modifications in Alzheimer's disease. Neurobiology of Disease, 2020, 145, 105058.	4.4	40
7	TRPML1 channels initiate Ca ²⁺ sparks in vascular smooth muscle cells. Science Signaling, 2020, 13, .	3.6	25
8	The neuronal (pro)renin receptor and astrocyte inflammation in the central regulation of blood pressure and blood glucose in mice fed a high-fat diet. American Journal of Physiology - Endocrinology and Metabolism, 2020, 318, E765-E778.	3.5	15
9	Elevated cerebrospinal fluid sodium in hypertensive human subjects with a family history of Alzheimer's disease. Physiological Genomics, 2020, 52, 133-142.	2.3	10
10	Exacerbated effects of prorenin on hypothalamic magnocellular neuronal activity and vasopressin plasma levels during salt-sensitive hypertension. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 317, H496-H504.	3.2	7
11	(Pro)renin receptor regulates lung development via the Wnt/β-catenin signaling pathway. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2019, 317, L202-L211.	2.9	17
12	(Pro)renin receptor knockdown in the paraventricular nucleus of the hypothalamus attenuates hypertension development and AT ₁ receptor-mediated calcium events. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 316, H1389-H1405.	3.2	25
13	Increased (pro)renin receptor expression in the subfornical organ of hypertensive humans. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 314, H796-H804.	3.2	17
14	Neuronal (pro)renin receptor regulates deoxycorticosterone-induced sodium intake. Physiological Genomics, 2018, 50, 904-912.	2.3	6
15	Neuronal (Pro)renin Receptor Regulates Angiotensin II Type 1 Receptorsâ€Mediated Calcium Activity in the Paraventricular Nucleus of the Hypothalamus in Hypertension. FASEB Journal, 2018, 32, 885.6.	0.5	0
16	From Brain to Pancreas: Beneficial Effects of the Neuronal (Pro)renin Receptor Deletion in Highâ€fat Diet Induced Type II Diabetes. FASEB Journal, 2018, 32, 885.7.	0.5	0
17	Overexpression of the Neuronal Human (Pro)renin Receptor Mediates Angiotensin II-Independent Blood Pressure Regulation in the Central Nervous System. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 314, H580-H592.	3.2	11
18	Obesityâ€Mediated Regulation of the Cardiac Acetylome. FASEB Journal, 2017, 31, 602.14.	0.5	0

Yumei Feng

#	Article	IF	CITATIONS
19	The critical role of the central nervous system (pro)renin receptor in regulating systemic blood pressure. , 2016, 164, 126-134.		48
20	Mechanisms underlying prorenin actions on hypothalamic neurons implicated in cardiometabolic control. Molecular Metabolism, 2016, 5, 858-868.	6.5	11
21	Soluble (pro)renin receptor via β-catenin enhances urine concentration capability as a target of liver X receptor. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1898-906.	7.1	83
22	ANG II-independent prorenin/(pro)renin receptor signaling pathways in the central nervous system. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 309, H731-H733.	3.2	11
23	Renal medullary (pro)renin receptor contributes to angiotensin II-induced hypertension in rats via activation of the local renin–angiotensin system. BMC Medicine, 2015, 13, 278.	5.5	63
24	Brain ACE2 overexpression reduces DOCA-salt hypertension independently of endoplasmic reticulum stress. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 308, R370-R378.	1.8	33
25	Localized TRPA1 channel Ca ²⁺ signals stimulated by reactive oxygen species promote cerebral artery dilation. Science Signaling, 2015, 8, ra2.	3.6	139
26	Angiotensin II regulates brain (pro)renin receptor expression through activation of cAMP response element-binding protein. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 309, R138-R147.	1.8	24
27	Intracerebroventricular Infusion of the (Pro)renin Receptor Antagonist PRO20 Attenuates Deoxycorticosterone Acetate-Salt–Induced Hypertension. Hypertension, 2015, 65, 352-361.	2.7	83
28	Altered Inflammatory Response Is Associated With an Impaired Autonomic Input to the Bone Marrow in the Spontaneously Hypertensive Rat. Hypertension, 2014, 63, 542-550.	2.7	90
29	Neuron-Specific (Pro)renin Receptor Knockout Prevents the Development of Salt-Sensitive Hypertension. Hypertension, 2014, 63, 316-323.	2.7	88
30	The (pro)renin receptor and body fluid homeostasis. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2013, 305, R104-R106.	1.8	13
31	(Pro)renin Receptor Mediates Both Angiotensin II-Dependent and -Independent Oxidative Stress in Neuronal Cells. PLoS ONE, 2013, 8, e58339.	2.5	63
32	Acute prorenin infusion mediates angiotensin llâ€dependent pressor response via binding to (pro)renin receptor in the central nervous system. FASEB Journal, 2013, 27, 927.1.	0.5	0
33	Mice lacking the gene for Toll Like receptorâ€4 (TLR4) had an attenuated blood pressure response to Angiotensin II infusion. FASEB Journal, 2013, 27, 696.4.	0.5	2
34	Expression of (pro)renin receptor and angiotensin II type 1 receptor on bone marrowâ€related neurons in the central nervous system. FASEB Journal, 2013, 27, 1187.15.	0.5	0
35	Brain-Targeted (Pro)renin Receptor Knockdown Attenuates Angiotensin Il–Dependent Hypertension. Hypertension, 2012, 59, 1188-1194.	2.7	89
36	The Prorenin and (Pro)renin Receptor: New Players in the Brain Renin-Angiotensin System?. International Journal of Hypertension, 2012, 2012, 1-8.	1.3	40

Yumei Feng

#	Article	IF	CITATIONS
37	Angiotensin-Converting Enzyme 2 Over-Expression in the Central Nervous System Reduces Angiotensin-II-Mediated Cardiac Hypertrophy. PLoS ONE, 2012, 7, e48910.	2.5	39
38	Opposing roles of PARP-1 in MMP-9 and TIMP-2 expression and mast cell degranulation in dyslipidemic dilated cardiomyopathy. Cardiovascular Pathology, 2011, 20, e57-e68.	1.6	22
39	ACE2-Mediated Reduction of Oxidative Stress in the Central Nervous System Is Associated with Improvement of Autonomic Function. PLoS ONE, 2011, 6, e22682.	2.5	108
40	Angiotensin onverting enzyme 2: a new target for neurogenic hypertension. Experimental Physiology, 2010, 95, 601-606.	2.0	42
41	Brain-Selective Overexpression of Human Angiotensin-Converting Enzyme Type 2 Attenuates Neurogenic Hypertension. Circulation Research, 2010, 106, 373-382.	4.5	168
42	Angiotensin II Type 1 Receptor–Mediated Reduction of Angiotensin-Converting Enzyme 2 Activity in the Brain Impairs Baroreflex Function in Hypertensive Mice. Hypertension, 2009, 53, 210-216.	2.7	95
43	Rab1 GTPase and Dimerization in the Cell Surface Expression of Angiotensin II Type 2 Receptor. Journal of Pharmacology and Experimental Therapeutics, 2009, 330, 109-117.	2.5	38
44	Structural Insight into the Activation Mechanism of Human Pancreatic Prophospholipase A2. Journal of Biological Chemistry, 2009, 284, 16659-16666.	3.4	25
45	Protective Effects of PARP-1 Knockout on Dyslipidemia-Induced Autonomic and Vascular Dysfunction in ApoEâ^'/â'' Mice: Effects on eNOS and Oxidative Stress. PLoS ONE, 2009, 4, e7430.	2.5	34
46	Central ACE2 reduces blood pressure and restores baroreflex and autonomic functions in chronically hypertensive mice. FASEB Journal, 2009, 23, 607.1.	0.5	0
47	ACE2 expression in the central nervous system reduces angiotensinâ€llâ€mediated hypertension and cardiac hypertrophy in transgenic mice FASEB Journal, 2009, 23, 802.1.	0.5	0
48	Angiotensin-Converting Enzyme 2 Overexpression in the Subfornical Organ Prevents the Angiotensin II–Mediated Pressor and Drinking Responses and Is Associated With Angiotensin II Type 1 Receptor Downregulation. Circulation Research, 2008, 102, 729-736.	4.5	128
49	ACE2 overâ€expression ameliorates glycemic homeostasis in diabetic mice. FASEB Journal, 2008, 22, 1236.2.	0.5	0
50	ACE2 prevention of oxidative stress in the brain is associated with a reduction in Angiotensin Ilâ€induced sympathetic vasomodulation. FASEB Journal, 2008, 22, 1236.3.	0.5	1
51	The Two fACEs of the Tissue Renin-Angiotensin Systems: Implication in Cardiovascular Diseases. Current Pharmaceutical Design, 2007, 13, 1231-1245.	1.9	53
52	Inâ€vitro and inâ€vivo ACE2 gene delivery: evidence for a role in the central regulation of blood pressure. FASEB Journal, 2007, 21, A889.	0.5	0
53	Alkali burn causes aldehyde dehydrogenase 3A1 (ALDH3A1) decrease in mouse cornea. Molecular Vision, 2004, 10, 845-50.	1.1	10