
Zofia Ecaterina Taranu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4376838/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Largeâ€scale multiâ€trophic coâ€response models and environmental control of pelagic food webs in QuA©bec lakes. Oikos, 2021, 130, 377-395.	2.7	4
2	Emergent vegetation in Netley-Libau Marsh: Temporal changes (1990–2013) in cover in relation to Lake Winnipeg level and Red River flow. Journal of Great Lakes Research, 2021, 47, 690-702.	1.9	3
3	Zooplankton communities in Precambrian Shield lakes (Quebec, Canada): responses to spatial and temporal gradients in water chemistry and climate. Canadian Journal of Fisheries and Aquatic Sciences, 2021, 78, 567-579.	1.4	7
4	Comparing key drivers of cyanobacteria biomass in temperate and tropical systems. Harmful Algae, 2020, 97, 101859.	4.8	22
5	Predicting atrazine concentrations in waterbodies across the contiguous United States: The importance of land use, hydrology, and water physicochemistry. Limnology and Oceanography, 2020, 65, 2966-2983.	3.1	18
6	Meteorological and Nutrient Conditions Influence Microcystin Congeners in Freshwaters. Toxins, 2019, 11, 620.	3.4	18
7	Contrasting histories of microcystin-producing cyanobacteria in two temperate lakes as inferred from quantitative sediment DNA analyses. Lake and Reservoir Management, 2019, 35, 102-117.	1.3	19
8	Can we detect ecosystem critical transitions and signals of changing resilience from paleoâ€ecological records?. Ecosphere, 2018, 9, e02438.	2.2	25
9	Similarity in spatial structure constrains ecosystem relationships: Building a macroscale understanding of lakes. Global Ecology and Biogeography, 2018, 27, 1251-1263.	5.8	26
10	Niche Separation Increases With Genetic Distance Among Bloom-Forming Cyanobacteria. Frontiers in Microbiology, 2018, 9, 438.	3.5	28
11	Regional versus local drivers of water quality in the Windermere catchment, Lake District, United Kingdom: The dominant influence of wastewater pollution over the past 200Âyears. Global Change Biology, 2018, 24, 4009-4022.	9.5	28
12	Predicting microcystin concentrations in lakes and reservoirs at a continental scale: A new framework for modelling an important health risk factor. Global Ecology and Biogeography, 2017, 26, 625-637.	5.8	59
13	Extrinsic vs. Intrinsic Regimes Shifts in Shallow Lakes: Long-Term Response of Cyanobacterial Blooms to Historical Catchment Phosphorus Loading and Climate Warming. Frontiers in Ecology and Evolution, 2017, 5, .	2.2	15
14	Urban point sources of nutrients were the leading cause for the historical spread of hypoxia across European lakes. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12655-12660.	7.1	89
15	Acceleration of cyanobacterial dominance in north temperateâ€subarctic lakes during the Anthropocene. Ecology Letters, 2015, 18, 375-384.	6.4	270
16	Proximity to ice fields and lake depth as modulators of paleoclimate records: a regional study from southwest Yukon, Canada. Journal of Paleolimnology, 2014, 52, 185-200.	1.6	7
17	Insights for lake management gained when paleolimnological and water column monitoring studies are combined: A case study from Baptiste Lake. Lake and Reservoir Management, 2014, 30, 11-22.	1.3	11
18	Small Changes in Climate Can Profoundly Alter the Dynamics and Ecosystem Services of Tropical Crater Lakes. PLoS ONE, 2014, 9, e86561.	2.5	45

Zofia Ecaterina Taranu

#	Article	IF	CITATIONS
19	Predicting cyanobacterial dynamics in the face of global change: the importance of scale and environmental context. Global Change Biology, 2012, 18, 3477-3490.	9.5	106
20	The influence of time, soil characteristics, and landâ€use history on soil phosphorus legacies: a global metaâ€analysis. Global Change Biology, 2012, 18, 1904-1917.	9.5	107
21	Land-Use Legacies Are Important Determinants of Lake Eutrophication in the Anthropocene. PLoS ONE, 2011, 6, e15913.	2.5	46
22	Contrasting responses of dimictic and polymictic lakes to environmental change: a spatial and temporal study. Aquatic Sciences, 2010, 72, 97-115.	1.5	21
23	Quantifying Relationships Among Phosphorus, Agriculture, and Lake Depth at an Inter-Regional Scale. Ecosystems, 2008, 11, 715-725.	3.4	81
24	Foodweb biodiversity and community structure in urban waterbodies vary with habitat complexity, macrophyte cover, and trophic status. Hydrobiologia, 0, , 1.	2.0	2