
Gurpreet Singh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4376473/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ferroelectric ceramics and glass ceramics for photocatalysis. , 2022, , 297-322.		1
2	Efficient dye removal using adsorption and photocatalytic capabilities of titania-supported vanadia. Materials Technology, 2021, 36, 504-512.	1.5	2
3	Utilizing the localized surface piezoelectricity of centrosymmetric Sr1-xFexTiO3 (xâ‰ 0 .2) ceramics for piezocatalytic dye degradation. Journal of the European Ceramic Society, 2021, 41, 326-334.	2.8	42
4	Surface plasmon resonance triggered promising visible light photocatalysis of LiNbO ₃ ceramic supported Ag nanoparticles. Journal of the American Ceramic Society, 2021, 104, 1237-1246.	1.9	10
5	Emerging trends in glass-ceramic photocatalysts. Chemical Engineering Journal, 2021, 407, 126971.	6.6	41
6	A reduced graphene oxide/bismuth vanadate composite as an efficient piezocatalyst for degradation of organic dye. Materials Advances, 2021, 2, 4093-4101.	2.6	18
7	Processing routes, resulting microstructures, and strain rate dependent deformation behaviour of advanced high strength steels for automotive applications. Archives of Civil and Mechanical Engineering, 2021, 21, 1.	1.9	15
8	Promising multicatalytic and adsorption capabilities in V2O5/BiVO4 composite pellets for water-cleaning application. Surfaces and Interfaces, 2021, 23, 100924.	1.5	17
9	Flexible Ag@LiNbO ₃ /PVDF Composite Film for Piezocatalytic Dye/Pharmaceutical Degradation and Bacterial Disinfection. ACS Applied Materials & Interfaces, 2021, 13, 22914-22925.	4.0	90
10	Diesel Soot as a Supercapacitor Electrode Material. Journal of the Electrochemical Society, 2021, 168, 050551.	1.3	3
11	Piezocatalysis in ferroelectric Ba0.85Ca0.15Zr0.1Ti0.9O3/polyvinylidene difluoride (PVDF) composite film. Journal of Applied Physics, 2021, 130, .	1.1	14
12	Polar glass-ceramics for piezocatalytic applications. Journal of Applied Physics, 2021, 130, .	1.1	9
13	Ag-nanoparticles-loaded Ba _{0.85} Ca _{0.15} Ti _{0.9} Zr _{0.1} O ₃ for multicatalytic dye degradation. Nanotechnology, 2021, 32, 145716.	1.3	15
14	Melt quenched V2O5/BiVO4 composite: A novel and promising adsorbent and photocatalyst. Materials Chemistry and Physics, 2020, 240, 122238.	2.0	14
15	Exploring the piezocatalytic dye degradation capability of lithium niobate. Advanced Powder Technology, 2020, 31, 1771-1775.	2.0	75
16	Dye degradation and bacterial disinfection using multicatalytic BaZr _{0.02} Ti _{0.98} O ₃ ceramics. Journal of the American Ceramic Society, 2020, 103, 4774-4784.	1.9	61
17	Transparent ferroelectric glass–ceramics for wastewater treatment by piezocatalysis. Communications Materials, 2020, 1, .	2.9	37
18	Diesel soot coated non-woven fabric for oil-water separation and adsorption applications. Scientific Reports, 2019, 9, 8503.	1.6	25

GURPREET SINGH

#	Article	IF	CITATIONS
19	Transparent ZnO crystallized glass ceramics for photocatalytic and antibacterial applications. Journal of Applied Physics, 2019, 125, .	1.1	28
20	Transparent CaF ₂ surface crystallized CaO–2B ₂ O ₃ glass possessing efficient photocatalytic and antibacterial properties. Journal of the American Ceramic Society, 2019, 102, 5127-5137.	1.9	17
21	Influence of LiNbO3 crystallization on the optical, dielectric and nanoindentation properties of the 30SiO2–35Li2O–35Nb2O5 glass. Journal of Applied Physics, 2019, 126, .	1.1	18
22	Tunable surface adsorption and wettability of candle soot coated on ferroelectric ceramics. Journal of Advanced Research, 2019, 16, 35-42.	4.4	16
23	Controlled crystallization of BiOCl/BiF3 on ZnO–Bi2O3–B2O3 glass surfaces for photocatalytic and self-cleaning applications. Materialia, 2019, 5, 100196.	1.3	13
24	Antibacterial and photocatalytic active transparent TiO ₂ crystallized CaO–BaO–B ₂ O ₃ –Al ₂ O ₃ –TiO ₂ –ZnO nanocomposites. Journal of the American Ceramic Society, 2019, 102, 3378-3390.	glæs	26
25	Correlation between Lüders band formation and precipitation kinetics behaviour during the industrial processing of interstitial free high strength steels. Archives of Civil and Mechanical Engineering, 2019, 19, 469-483.	1.9	9