
## Noe Arjona

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4376346/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                     | IF           | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------|
| 1  | Hierarchical Pd and Pt structures obtained on 3D carbon electrodes as electrocatalysts for the ethylene glycol electro-oxidation. Applied Surface Science, 2022, 571, 151246.                               | 3.1          | 9         |
| 2  | Electrocatalytic oxidation of sorbitol on PdxAuy/C bimetallic nanocatalysts. Fuel, 2022, 314, 122788.                                                                                                       | 3.4          | 5         |
| 3  | Manganese Oxides (Mn <sub>3</sub> O <sub>4</sub> & αâ€MnO <sub>2</sub> ) as Coâ€catalysts in Pdâ€<br>Nanomaterials for the Ethylene Glycol Electroâ€Oxidation ChemElectroChem, 2022, 9, .                   | Based<br>1.7 | 2         |
| 4  | Zincâ€Air Battery Operated with Modifiedâ€Zinc Electrodes/Gel Polymer Electrolytes. ChemElectroChem,<br>2022, 9, .                                                                                          | 1.7          | 5         |
| 5  | Defected NiFe layered double hydroxides on N-doped carbon nanotubes as efficient bifunctional<br>electrocatalyst for rechargeable zinc–air batteries. Applied Surface Science, 2022, 601, 154253.           | 3.1          | 17        |
| 6  | Formation of Cu@Pd core@shell nanocatalysts with high activity for ethanol electro-oxidation in alkaline medium. Applied Surface Science, 2021, 538, 148119.                                                | 3.1          | 11        |
| 7  | Electrocatalytic oxidation of crude glycerol from the biodiesel production on Pd-M (MÂ=Âlr, Ru or Pt)<br>sub-10Ânm nanomaterials. Applied Surface Science, 2021, 545, 149055.                               | 3.1          | 15        |
| 8  | Crystallographic Pattern Mediates Fungal Nanoadhesion Bond Formation on Titanium Nanotubes. ACS<br>Omega, 2021, 6, 15625-15636.                                                                             | 1.6          | 6         |
| 9  | Zn‒air battery operated with a 3DOM trimetallic spinel (Mn0.5Ni0.5Co2O4) as the oxygen electrode.<br>Electrochimica Acta, 2021, 391, 138900.                                                                | 2.6          | 26        |
| 10 | Electrochemical valorization of crude glycerol in alkaline medium for energy conversion using Pd,<br>Au and PdAu nanomaterials. Fuel, 2020, 262, 116556.                                                    | 3.4          | 29        |
| 11 | Synthesis of a small-size metal oxide mixture based on MoO and NiO with oxygen vacancies as bifunctional electrocatalyst for oxygen reactions. Applied Surface Science, 2020, 509, 144898.                  | 3.1          | 28        |
| 12 | Highly active PdNi bimetallic nanocubes electrocatalysts for the ethylene glycol electro-oxidation in alkaline medium. Applied Surface Science, 2020, 530, 147210.                                          | 3.1          | 20        |
| 13 | Three-Dimensional-Order Macroporous AB <sub>2</sub> O <sub>4</sub> Spinels (A, B =Co and Mn) as<br>Electrodes in Zn–Air Batteries. ACS Applied Materials & Interfaces, 2020, 12, 53760-53773.               | 4.0          | 52        |
| 14 | A Flow-Through Membraneless Microfluidic Zinc–Air Cell. ACS Applied Materials & Interfaces,<br>2020, 12, 41185-41199.                                                                                       | 4.0          | 9         |
| 15 | Effect of AuM (M: Ag, Pt & Pd) bimetallic nanoparticles on the sorbitol electro-oxidation in alkaline medium. Fuel, 2020, 274, 117864.                                                                      | 3.4          | 18        |
| 16 | Sorbitol electro-oxidation reaction on sub<10Ânm PtAu bimetallic nanoparticles. Electrochimica<br>Acta, 2020, 353, 136593.                                                                                  | 2.6          | 8         |
| 17 | Synthesis and application of biogenic gold nanomaterials with {1Â0Â0} facets for crude glycerol electro-oxidation. Fuel, 2020, 279, 118505.                                                                 | 3.4          | 15        |
| 18 | Ethanol electro‒oxidation and spectroelectrochemical analysis of highly active sub<10Ânm PdFe2O3,<br>PdPt and PdAu bimetallic nanoparticles. International Journal of Hydrogen Energy, 2020, 45, 9758-9772. | 3.8          | 11        |

NOE ARJONA

| #  | Article                                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | An advanced three-dimensionally ordered macroporous NiCo <sub>2</sub> O <sub>4</sub> spinel as a bifunctional electrocatalyst for rechargeable Zn–air batteries. Journal of Materials Chemistry A, 2020, 8, 8554-8565.                                   | 5.2 | 50        |
| 20 | Electrocatalytic Promotion of Pt Nanoparticles by Incorporation of Ni(OH) <sub>2</sub> for Glycerol Electroâ€Oxidation: Analysis of Activity and Reaction Pathway. ChemNanoMat, 2019, 5, 68-78.                                                          | 1.5 | 19        |
| 21 | High performance of Pd and PdAg with well‒defined facets in direct ethylene glycol microfluidic fuel cells. Electrochimica Acta, 2019, 320, 134622.                                                                                                      | 2.6 | 25        |
| 22 | Electrocatalytic evaluation of Co3O4 and NiCo2O4 rosettes-like hierarchical spinel as bifunctional materials for oxygen evolution (OER) and reduction (ORR) reactions in alkaline media. Journal of Electroanalytical Chemistry, 2019, 847, 113190.      | 1.9 | 85        |
| 23 | Effect of molybdenum content on the morphology and electronic characteristics of Pd–MoO<br>nanomaterials and activity evaluation for ethylene glycol electro–oxidation. Applied Surface Science,<br>2019, 498, 143842.                                   | 3.1 | 22        |
| 24 | Synthesis of PtAg bimetallic material as a multi-fuel tolerant electrocatalyst and<br>spectroelectrochemical analysis of its capability to perform the oxygen reduction. Materials Today<br>Energy, 2019, 14, 100335.                                    | 2.5 | 4         |
| 25 | Synthesis of Pd Fe3O4 nanoparticles varying the stabilizing agent and additive and their effect on the ethanol electro-oxidation in alkaline media. Journal of Electroanalytical Chemistry, 2019, 835, 301-312.                                          | 1.9 | 10        |
| 26 | Nanocomposite membrane based on SPEEK as a perspectives application in electrochemical hydrogen compressor. International Journal of Hydrogen Energy, 2019, 44, 4839-4850.                                                                               | 3.8 | 20        |
| 27 | Electrocatalytic Evaluation of Highly Stable Pt/ZrO 2 Electrocatalysts for the Methanol Oxidation<br>Reaction Synthesized Without the Assistance of Any Carbon Support. ChemElectroChem, 2019, 6,<br>2107-2118.                                          | 1.7 | 17        |
| 28 | Gold nanoparticles bioreduced by natural extracts of arantho ( <i>Kalanchoe daigremontiana</i> ) for<br>biological purposes: physicochemical, antioxidant and antiproliferative evaluations. Materials<br>Research Express, 2019, 6, 055010.             | 0.8 | 12        |
| 29 | Electrocatalytic evaluation of sorbitol oxidation as a promising fuel in energy conversion using Au/C,<br>Pd/C and Au–Pd/C synthesized through ionic liquids. Fuel, 2019, 250, 103-116.                                                                  | 3.4 | 17        |
| 30 | CuAg electrode for creatinine microfluidic fuel cell based self-powered electrochemical sensor ,<br>2019, , .                                                                                                                                            |     | 1         |
| 31 | Synthesis and evaluation of HfO <sub>2</sub> as a prospective filler in inorganic–organic hybrid<br>membranes based on Nafion for PEM fuel cells. Nanotechnology, 2019, 30, 105707.                                                                      | 1.3 | 9         |
| 32 | DNA probe functionalization on different morphologies of ZnO/Au nanowire for bio-sensing applications. Materials Letters, 2019, 235, 250-253.                                                                                                            | 1.3 | 18        |
| 33 | Ethanol Electroâ€oxidation in Aqueous and Poly(acrylic acid)â€Based Gel Alkaline Electrolytes, Varying<br>the Pd <sub><i>x</i></sub> Ag <sub><i>y</i></sub> Composition by using Differential Pulse<br>Amperometry. ChemElectroChem, 2018, 5, 1159-1166. | 1.7 | 3         |
| 34 | Production, characterization and evaluation of the energetic capability of bioethanol from<br>Salicornia Bigelovii as a renewable energy source. Renewable Energy, 2018, 123, 125-134.                                                                   | 4.3 | 51        |
| 35 | Evaluation of hybrid and enzymatic nanofluidic fuel cells using 3D carbon structures. International<br>Journal of Hydrogen Energy, 2018, 43, 11847-11852.                                                                                                | 3.8 | 16        |
| 36 | Pd/carbon paper electrodes modified with polyaniline as co-support for sustainable energy conversion of bioethanol from Salicornia bigelovii. Materials Today Energy, 2018, 10, 169-183.                                                                 | 2.5 | 3         |

Noe Arjona

| #  | Article                                                                                                                                                                                                      | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Urease enzyme as anodic catalyst in a microfluidic fuel cell. Journal of Physics: Conference Series, 2018, 1052, 012057.                                                                                     | 0.3 | 0         |
| 38 | NiAl Layered Double Hydroxides and PdNiO as Multifunctional Anodes for Prospective Selfâ€Powered<br>Labâ€onâ€aâ€Chip Dopamine Sensors. ChemNanoMat, 2018, 4, 688-697.                                        | 1.5 | 9         |
| 39 | Synthesis of a Small Amorphous PdMo/C Nanocatalyst and Pd Nanocubes Enclosed within (100) Planes and Their Use for Ethylene Glycol Electro–oxidation. ChemElectroChem, 2017, 4, 728-737.                     | 1.7 | 14        |
| 40 | Glycerol electro-oxidation in alkaline media using Pt and Pd catalysts electrodeposited on three-dimensional porous carbon electrodes. New Journal of Chemistry, 2017, 41, 1854-1863.                        | 1.4 | 46        |
| 41 | Evaluation of single and stack membraneless enzymatic fuel cells based on ethanol in simulated body fluids. Biosensors and Bioelectronics, 2017, 92, 117-124.                                                | 5.3 | 31        |
| 42 | Ordered Mesoporous Carbon Decorated with Magnetite for the Detection of Heavy Metals by Square<br>Wave Anodic Stripping Voltammetry. Journal of the Electrochemical Society, 2017, 164, B304-B313.           | 1.3 | 14        |
| 43 | Effect of betaine in the successful synthesis of CoFe 2 O 4 containing octahedron nanoparticles for electrocatalytic water oxidation. Applied Surface Science, 2017, 426, 980-986.                           | 3.1 | 7         |
| 44 | In Situ Surface-Enhanced Raman Spectroscopy Study of the Electrocatalytic Effect of PtFe/C<br>Nanocatalyst on Ethanol Electro-Oxidation in Alkaline Medium. Energies, 2017, 10, 290.                         | 1.6 | 10        |
| 45 | High performance of ethanol co-laminar flow fuel cells based on acrylic, paper and Pd-NiO as anodic catalyst. Electrochimica Acta, 2016, 207, 164-176.                                                       | 2.6 | 30        |
| 46 | Direct Ethanol Membraneless Nanofluidic Fuel Cell With High Performance. ChemistrySelect, 2016, 1,<br>3054-3062.                                                                                             | 0.7 | 12        |
| 47 | A compact and bendable, hook-and-loop tape-based membraneless device for energy conversion.<br>Journal of Micromechanics and Microengineering, 2016, 26, 124011.                                             | 1.5 | 4         |
| 48 | Stack air-breathing membraneless glucose microfluidic biofuel cell. Journal of Physics: Conference<br>Series, 2016, 773, 012114.                                                                             | 0.3 | 3         |
| 49 | Electrooxidation of crude glycerol as waste from biodiesel in a nanofluidic fuel cell using Cu@Pd/C and Cu@Pt/C. Fuel, 2016, 183, 195-205.                                                                   | 3.4 | 44        |
| 50 | An electrokinetic-combined electrochemical study of the glucose electro-oxidation reaction: effect of gold surface energy. RSC Advances, 2016, 6, 15630-15638.                                               | 1.7 | 39        |
| 51 | Effect of pH in a Pd-based ethanol membraneless air breathing nanofluidic fuel cell with flow-through electrodes. Journal of Physics: Conference Series, 2015, 660, 012056.                                  | 0.3 | 2         |
| 52 | Evaluation of alcohol dehydrogenase and aldehyde dehydrogenase enzymes as bi-enzymatic anodes in a<br>membraneless ethanol microfluidic fuel cell. Journal of Physics: Conference Series, 2015, 660, 012131. | 0.3 | 5         |
| 53 | Copper–palladium core–shell as an anode in a multi-fuel membraneless nanofluidic fuel cell: toward<br>a new era of small energy conversion devices. Chemical Communications, 2015, 51, 2536-2539.            | 2.2 | 48        |
| 54 | Direct Formic Acid Microfluidic Fuel Cell with Pd Nanocubes Supported on Flow-Through<br>Microporous Electrodes. ECS Electrochemistry Letters, 2015, 4, F24-F28.                                             | 1.9 | 17        |

Noe Arjona

| #  | Article                                                                                                                                                                                                | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | A new type of high performance air-breathing glucose membraneless microfluidic fuel cell.<br>International Journal of Hydrogen Energy, 2015, 40, 14699-14705.                                          | 3.8 | 13        |
| 56 | Support Effect in the Electrocatalytic Activity of Cu@Pd Core-Shell toward Electrooxidation of Short Chain Alcohols in Alkaline Media. Journal of the Electrochemical Society, 2015, 162, F1439-F1444. | 1.3 | 10        |
| 57 | Nonâ€Conventional Electrochemical Techniques for Assembly of Electrodes on Glassy Carbonâ€Like PPF<br>Materials and Their Use in a Glucose Microfluidic Fuelâ€Cell. Fuel Cells, 2014, 14, 810-817.     | 1.5 | 8         |
| 58 | Synthesis of Pd-Cu Bimetallic Electrocatalyst for Ethylene Glycol and Glycerol Oxidations in Alkaline<br>Media. Procedia Chemistry, 2014, 12, 19-26.                                                   | 0.7 | 19        |
| 59 | Pd Nanostructures with High Tolerance to CO Poisoning in the Formic Acid Electrooxidation Reaction. Procedia Chemistry, 2014, 12, 9-18.                                                                | 0.7 | 8         |
| 60 | Effect of metal content on the electrocatalytic activity of AuxPdy mixtures and their use in a glucose membraneless microfluidic fuel cell. RSC Advances, 2014, 4, 26158-26165.                        | 1.7 | 11        |
| 61 | A nanofluidic direct formic acid fuel cell with a combined flow-through and air-breathing electrode for high performance. Lab on A Chip, 2014, 14, 4596-4598.                                          | 3.1 | 61        |
| 62 | AuPd/polyaniline as the anode in an ethylene glycol microfluidic fuel cell operated at room temperature. Chemical Communications, 2014, 50, 8151-8153.                                                 | 2.2 | 35        |
| 63 | Hybrid microfluidic fuel cell based on Laccase/C and AuAg/C electrodes. Biosensors and Bioelectronics, 2014, 62, 221-226.                                                                              | 5.3 | 27        |
| 64 | Staircase and pulse potential electrochemical techniques for the facile and rapid synthesis of Pt and PtAg materials. Electrochimica Acta, 2014, 115, 46-55.                                           | 2.6 | 8         |
| 65 | Electrochemical synthesis of flower-like Pd nanoparticles with high tolerance toward formic acid electrooxidation. RSC Advances, 2013, 3, 15727.                                                       | 1.7 | 21        |
| 66 | Electrocatalytic activity of well-defined and homogeneous cubic-shaped Pd nanoparticles. Journal of<br>Materials Chemistry A, 2013, 1, 15524.                                                          | 5.2 | 39        |
| 67 | Laccase/AuAg Hybrid Glucose Microfludic Fuel Cell. Journal of Physics: Conference Series, 2013, 476, 012044.                                                                                           | 0.3 | 1         |
| 68 | Formic acid microfluidic fuel cell based on well-defined Pd nanocubes. Journal of Physics:<br>Conference Series, 2013, 476, 012033.                                                                    | 0.3 | 9         |
| 69 | Electrochemical growth of Au architectures on glassy carbon and their evaluation toward glucose oxidation reaction. New Journal of Chemistry, 2012, 36, 2555.                                          | 1.4 | 22        |
| 70 | Microfluidics in Membraneless Fuel Cells. , 0, , .                                                                                                                                                     |     | 0         |