
Dean S Venables

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4375731/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Amplitude-Modulated Cavity-Enhanced Absorption Spectroscopy with Phase-Sensitive Detection: A New Approach Applied to the Fast and Sensitive Detection of NO2. Analytical Chemistry, 2022, , .	6.5	4
2	A Demonstration of Broadband Cavity-Enhanced Absorption Spectroscopy at Deep-Ultraviolet Wavelengths: Application to Sensitive Real-Time Detection of the Aromatic Pollutants Benzene, Toluene, and Xylene. Analytical Chemistry, 2022, 94, 4286-4293.	6.5	6
3	Techniques for measuring indoor radicals and radical precursors. Applied Spectroscopy Reviews, 2022, 57, 580-624.	6.7	2
4	Broadband optical cavity methods. , 2021, , 95-158.		2
5	Simultaneous measurements of the relative-humidity-dependent aerosol light extinction, scattering, absorption, and single-scattering albedo with a humidified cavity-enhanced albedometer. Atmospheric Measurement Techniques, 2020, 13, 2623-2634.	3.1	9
6	Improving the accuracy and precision of broadband optical cavity measurements. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 218, 178-183.	3.9	5
7	Open path incoherent broadband cavity-enhanced measurements of NO3 radical and aerosol extinction in the North China Plain. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 208, 24-31.	3.9	22
8	Improved spherical mirror multipass-cell-based interband cascade laser spectrometer for detecting ambient formaldehyde at parts per trillion by volume levels. Applied Optics, 2019, 58, 8743.	1.8	10
9	Removing Water Vapor Interference in Peroxy Radical Chemical Amplification with a Large Diameter Nafion Dryer. Analytical Chemistry, 2018, 90, 3307-3312.	6.5	9
10	Three-wavelength cavity-enhanced albedometer for measuring wavelength-dependent optical properties and single-scattering albedo of aerosols. Optics Express, 2018, 26, 33484.	3.4	16
11	The influence of photochemical aging on light absorption of atmospheric black carbon and aerosol single-scattering albedo. Atmospheric Chemistry and Physics, 2018, 18, 16829-16844.	4.9	40
12	Portable broadband cavity-enhanced spectrometer utilizing Kalman filtering: application to real-time, in situ monitoring of glyoxal and nitrogen dioxide. Optics Express, 2017, 25, 26910.	3.4	37
13	Development of an incoherent broad-band cavity-enhanced aerosol extinction spectrometer and its application to measurement of aerosol optical hygroscopicity. Applied Optics, 2017, 56, E16.	2.1	15
14	Applications of Spectroscopy in Environmental Monitoring of Gases and Aerosols. Journal of Spectroscopy, 2016, 2016, 1-1.	1.3	1
15	Exploration of the short-wavelength optical properties of particles using broadband optical cavity spectroscopy. , 2016, , .		0
16	Study of nephelometer correction factors in winter Shanghai. , 2016, , .		1
17	Enhanced Volatile Organic Compounds emissions and organic aerosol mass increase the oligomer content of atmospheric aerosols. Scientific Reports, 2016, 6, 35038.	3.3	80
18	Design and characterization of a novel single-particle polar nephelometer. Aerosol Science and Technology, 2016, 50, 392-404.	3.1	19

#	Article	IF	CITATIONS
19	Optical properties of atmospheric fine particles near Beijing during the HOPE-J ³ A campaign. Atmospheric Chemistry and Physics, 2016, 16, 6421-6439.	4.9	38
20	Upper limits for absorption by water vapor in the near-UV. Journal of Quantitative Spectroscopy and Radiative Transfer, 2016, 170, 194-199.	2.3	20
21	Molecular composition of fresh and aged secondary organic aerosol from a mixture of biogenic volatile compounds: a high-resolution mass spectrometry study. Atmospheric Chemistry and Physics, 2015, 15, 5683-5695.	4.9	74
22	Using integrated absorption to calibrate optical cavity spectrometers. Analytical Methods, 2015, 7, 3298-3301.	2.7	4
23	Molecular composition of biogenic secondary organic aerosols using ultrahigh-resolution mass spectrometry: comparing laboratory and field studies. Atmospheric Chemistry and Physics, 2014, 14, 2155-2167.	4.9	70
24	A novel, broadband spectroscopic method to measure the extinction coefficient of aerosols in the near-ultraviolet. , 2013, , .		8
25	The seaweeds <i>Fucus vesiculosus</i> and <i>Ascophyllum nodosum</i> are significant contributors to coastal iodine emissions. Atmospheric Chemistry and Physics, 2013, 13, 5255-5264.	4.9	18
26	Light extinction by secondary organic aerosol: an intercomparison of three broadband cavity spectrometers. Atmospheric Measurement Techniques, 2013, 6, 3115-3130.	3.1	48
27	Intercomparison of NO ₃ radical detection instruments in the atmosphere simulation chamber SAPHIR. Atmospheric Measurement Techniques, 2013, 6, 1111-1140.	3.1	49
28	Coastal lodine Emissions. 1. Release of I ₂ by <i>Laminaria digitata</i> in Chamber Experiments. Environmental Science & Technology, 2012, 46, 10413-10421.	10.0	20
29	Coastal lodine Emissions: Part 2. Chamber Experiments of Particle Formation from <i>Laminaria digitata</i> -Derived and Laboratory-Generated I ₂ . Environmental Science & Technology, 2012, 46, 10422-10428.	10.0	13
30	Cavity-enhanced absorption using an atomic line source: application to deep-UV measurements. Analyst, The, 2012, 137, 2318.	3.5	15
31	Near-Ultraviolet Absorption Cross Sections of Nitrophenols and Their Potential Influence on Tropospheric Oxidation Capacity. Journal of Physical Chemistry A, 2011, 115, 12235-12242.	2.5	73
32	A broadband optical cavity spectrometer for measuring weak near-ultraviolet absorption spectra of gases. Atmospheric Measurement Techniques, 2011, 4, 425-436.	3.1	54
33	Intercomparison of measurements of NO ₂ concentrations in the atmosphere simulation chamber SAPHIR during the NO3Comp campaign. Atmospheric Measurement Techniques, 2010, 3, 21-37.	3.1	77
34	Long optical cavities for open-path monitoring of atmospheric trace gases and aerosol extinction. Applied Optics, 2009, 48, B159.	2.1	84
35	Incoherent Broadband Cavity-Enhanced Absorption Spectroscopy in the near-Ultraviolet: Application to HONO and NO2. Environmental Science & Technology, 2008, 42, 890-895.	10.0	137
36	A new Field Instrument for NO3 Detection using Incoherent Broadband Cavity Enhanced Spectroscopy.		0

36 , 2008, , .

DEAN S VENABLES

#	Article	IF	CITATIONS
37	High Sensitivityin SituMonitoring of NO3in an Atmospheric Simulation Chamber Using Incoherent Broadband Cavity-Enhanced Absorption Spectroscopy. Environmental Science & Technology, 2006, 40, 6758-6763.	10.0	127
38	The rotationally-resolved absorption spectrum of formaldehyde from 6547 to 6804cmâ^'1. Journal of Molecular Spectroscopy, 2005, 229, 115-121.	1.2	28
39	Broadband cavity-enhanced absorption spectroscopy for trace gas detection. , 2005, 5826, 202.		2
40	Effect of Reverse Micelle Size on the Librational Band of Confined Water and Methanol. Journal of Physical Chemistry B, 2001, 105, 9132-9138.	2.6	152
41	Structure and dynamics of nonaqueous mixtures of dipolar liquids. II. Molecular dynamics simulations. Journal of Chemical Physics, 2000, 113, 3249-3260.	3.0	51
42	Spectroscopy and dynamics of mixtures of water with acetone, acetonitrile, and methanol. Journal of Chemical Physics, 2000, 113, 11222-11236.	3.0	198
43	Structure and dynamics of nonaqueous mixtures of dipolar liquids. I. Infrared and far-infrared spectroscopy. Journal of Chemical Physics, 2000, 113, 3243-3248.	3.0	55
44	A DIRECT MEASUREMENT OF INTERMOLECULAR SOLVATION DYNAMICS USING TIME-RESOLVED THZ SPECTROSCOPY (TRTS). , 2000, , .		0
45	Far-infrared spectra and associated dynamics in acetonitrile–water mixtures measured with femtosecond THz pulse spectroscopy. Journal of Chemical Physics, 1998, 108, 4935-4944.	3.0	126
46	Reduction of tungsten oxides with carbon monoxide. Thermochimica Acta, 1997, 291, 131-140.	2.7	44
47	Reduction of tungsten oxides with carbon. Part 1: Thermal analyses. Thermochimica Acta, 1996, 282-283, 251-264.	2.7	35
48	Reduction of tungsten oxides with carbon. Part 2. Tube furnace experiments. Thermochimica Acta, 1996, 282-283, 265-276.	2.7	24
49	Reduction of tungsten oxides with hydrogen and with hydrogen and carbon. Thermochimica Acta, 1996, 285, 361-382.	2.7	60
50	Combustion of some zinc-fuelled binary pyrotechnic systems. Thermochimica Acta, 1995, 256, 309-324.	2.7	21
51	A thermoanalytical study of some zinc-fuelled binary pyrotechnic systems. Thermochimica Acta, 1995, 269-270, 649-663.	2.7	7