Bon-Kyoung Koo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4375555/publications.pdf

Version: 2024-02-01

57752 62593 12,895 85 44 80 citations h-index g-index papers 91 91 91 18262 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	RNF43/ZNRF3 negatively regulates taste tissue homeostasis and positively regulates dorsal lingual epithelial tissue homeostasis. Stem Cell Reports, 2022, 17, 369-383.	4.8	6
2	RNF43/ZNRF3 loss predisposes to hepatocellular-carcinoma by impairing liver regeneration and altering theÂliver lipid metabolic ground-state. Nature Communications, 2022, 13, 334.	12.8	28
3	Organoid Studies in COVID-19 Research. International Journal of Stem Cells, 2022, 15, 3-13.	1.8	13
4	p57Kip2 imposes the reserve stem cell state of gastric chief cells. Cell Stem Cell, 2022, 29, 826-839.e9.	11.1	17
5	Gastric organoidsâ€"an in vitro model system for the study of gastric development and road to personalized medicine. Cell Death and Differentiation, 2021, 28, 68-83.	11.2	56
6	Niche-specific MHC II and PD-L1 regulate CD4+CD8 $\hat{i}\pm\hat{i}\pm$ + intraepithelial lymphocyte differentiation. Journal of Experimental Medicine, 2021, 218, .	8.5	17
7	Postâ€ŧranslational Wnt receptor regulation: Is the fog slowly clearing?. BioEssays, 2021, 43, e2000297.	2.5	10
8	Wnt/l2â€eatenin signaling: Structure, assembly and endocytosis of the signalosome. Development Growth and Differentiation, 2021, 63, 199-218.	1.5	37
9	Organoids: ready for the revolution?. Journal of Molecular Medicine, 2021, 99, 441-442.	3.9	0
10	Sox2 modulation increases naÃ-ve pluripotency plasticity. IScience, 2021, 24, 102153.	4.1	12
11	Ub and Dub of RNF43/ZNRF3 in the WNT signalling pathway. EMBO Reports, 2021, 22, e52970.	4.5	12
12	Tracing oncogene-driven remodelling of the intestinal stem cell niche. Nature, 2021, 594, 442-447.	27.8	56
13	Arrest of WNT/β-catenin signaling enables the transition from pluripotent to differentiated germ cells in mouse ovaries. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	17
14	Release of Notch activity coordinated by IL- $1\hat{l}^2$ signalling confers differentiation plasticity of airway progenitors via Fosl2 during alveolar regeneration. Nature Cell Biology, 2021, 23, 953-966.	10.3	37
15	Genetic engineering in organoids. Journal of Molecular Medicine, 2021, 99, 555-568.	3.9	33
16	Methods in organoids: a model that goes beyond our imagination. Experimental and Molecular Medicine, 2021, 53, 1449-1450.	7.7	0
17	Human Microphysiological Models of Intestinal Tissue and Gut Microbiome. Frontiers in Bioengineering and Biotechnology, 2020, 8, 725.	4.1	46
18	Inflammatory Signals Induce AT2 Cell-Derived Damage-Associated Transient Progenitors that Mediate Alveolar Regeneration. Cell Stem Cell, 2020, 27, 366-382.e7.	11.1	303

#	Article	IF	CITATIONS
19	A phospho-switch controls RNF43-mediated degradation of Wnt receptors to suppress tumorigenesis. Nature Communications, 2020, 11 , 4586 .	12.8	40
20	Deficiency of the SMOC2 matricellular protein impairs bone healing and produces age-dependent bone loss. Scientific Reports, 2020, 10, 14817.	3.3	16
21	Human organoids: model systems for human biology and medicine. Nature Reviews Molecular Cell Biology, 2020, 21, 571-584.	37.0	1,082
22	Norovirus Replication in Human Intestinal Epithelial Cells Is Restricted by the Interferon-Induced JAK/STAT Signaling Pathway and RNA Polymerase II-Mediated Transcriptional Responses. MBio, 2020, 11, .	4.1	61
23	<scp>RNF</scp> 43 truncations trap <scp>CK</scp> 1 to drive nicheâ€independent selfâ€renewal in cancer. EMBO Journal, 2020, 39, e103932.	7.8	31
24	Defining the Identity and Dynamics of Adult Gastric Isthmus Stem Cells. Cell Stem Cell, 2019, 25, 342-356.e7.	11.1	97
25	Mouse Models of Human Gastric Cancer Subtypes With Stomach-Specific CreERT2-Mediated Pathway Alterations. Gastroenterology, 2019, 157, 1599-1614.e2.	1.3	50
26	A ZNRF3-dependent Wnt/ \hat{l}^2 -catenin signaling gradient is required for adrenal homeostasis. Genes and Development, 2019, 33, 209-220.	5.9	74
27	Modeling Host-Virus Interactions in Viral Infectious Diseases Using Stem-Cell-Derived Systems and CRISPR/Cas9 Technology. Viruses, 2019, 11, 124.	3.3	19
28	DNA methylation defines regional identity of human intestinal epithelial organoids and undergoes dynamic changes during development. Gut, 2019, 68, 49-61.	12.1	116
29	Human gastric cancer modelling using organoids. Gut, 2019, 68, 207-217.	12.1	204
30	Lineage Tracing: Computational Reconstruction Goes Beyond the Limit of Imaging. Molecules and Cells, 2019, 42, 104-112.	2.6	33
31	DNA Methylation and Transcription Patterns in Intestinal Epithelial Cells From Pediatric Patients With Inflammatory BowelÂDiseases Differentiate Disease Subtypes and Associate With Outcome. Gastroenterology, 2018, 154, 585-598.	1.3	226
32	Morphological alterations of cultured human colorectal matched tumour and healthy organoids. Oncotarget, 2018, 9, 10572-10584.	1.8	18
33	Tales from the crypt: intestinal niche signals in tissue renewal, plasticity and cancer. Open Biology, 2018, 8, .	3.6	96
34	Generation of FLIP and FLIP-FlpE Targeting Vectors for Biallelic Conditional and Reversible Gene Knockouts in Mouse and Human Cells. Methods in Molecular Biology, 2018, 1842, 255-264.	0.9	3
35	ZNRF3 functions in mammalian sex determination by inhibiting canonical WNT signaling. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5474-5479.	7.1	62
36	How to create state-of-the-art genetic model systems: strategies for optimal CRISPR-mediated genome editing. Nucleic Acids Research, 2018, 46, 6435-6454.	14.5	37

3

#	Article	IF	Citations
37	Divergent Routes toward Wnt and R-spondin Niche Independency during Human Gastric Carcinogenesis. Cell, 2018, 174, 856-869.e17.	28.9	222
38	One-step generation of conditional and reversible gene knockouts. Nature Methods, 2017, 14, 287-289.	19.0	72
39	Long-term, hormone-responsive organoid cultures of human endometrium in a chemically defined medium. Nature Cell Biology, 2017, 19, 568-577.	10.3	442
40	Stem Cells in Repair of Gastrointestinal Epithelia. Physiology, 2017, 32, 278-289.	3.1	59
41	Adult gastric stem cells and their niches. Wiley Interdisciplinary Reviews: Developmental Biology, 2017, 6, e261.	5.9	31
42	A Protocol for Multiple Gene Knockout in Mouse Small Intestinal Organoids Using a CRISPR-concatemer. Journal of Visualized Experiments, 2017, , .	0.3	9
43	Cover Image, Volume 6, Issue 2. Wiley Interdisciplinary Reviews: Developmental Biology, 2017, 6, e268.	5.9	0
44	Human primary liver cancer–derived organoid cultures for disease modeling and drug screening. Nature Medicine, 2017, 23, 1424-1435.	30.7	905
45	Clonal Evolution of Stem Cells in the Gastrointestinal Tract. Advances in Experimental Medicine and Biology, 2016, 908, 11-25.	1.6	3
46	Culture and establishment of self-renewing human and mouse adult liver and pancreas 3D organoids and their genetic manipulation. Nature Protocols, 2016, 11, 1724-1743.	12.0	527
47	Simultaneous paralogue knockout using a CRISPR-concatemer in mouse small intestinal organoids. Developmental Biology, 2016, 420, 271-277.	2.0	22
48	Organoids: A new in vitro model system for biomedical science and disease modelling and promising source for cell-based transplantation. Developmental Biology, 2016, 420, 197-198.	2.0	10
49	Adult stem cell lineage tracing and deep tissue imaging. BMB Reports, 2015, 48, 655-667.	2.4	15
50	Ascl2 Acts as an R-spondin/Wnt-Responsive Switch to Control Stemness in Intestinal Crypts. Cell Stem Cell, 2015, 16, 158-170.	11.1	217
51	Porcupine inhibitor suppresses paracrine Wnt-driven growth of <i>Rnf43;Znrf3</i> -mutant neoplasia. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7548-7550.	7.1	140
52	Modeling mouse and human development using organoid cultures. Development (Cambridge), 2015, 142, 3113-3125.	2.5	386
53	Stem Cells Marked by the R-Spondin Receptor LGR5. Gastroenterology, 2014, 147, 289-302.	1.3	129
54	A Video Protocol of Retroviral Infection in Primary Intestinal Organoid Culture. Journal of Visualized Experiments, 2014, , e51765.	0.3	34

#	Article	lF	Citations
55	Retroviral Gene Expression Control in Primary Organoid Cultures. Current Protocols in Stem Cell Biology, 2013, 27, Unit 5A.6	3.0	28
56	Differentiated Troy+ Chief Cells Act as Reserve Stem Cells to Generate All Lineages of the Stomach Epithelium. Cell, 2013, 155, 357-368.	28.9	445
57	Functional Repair of CFTR by CRISPR/Cas9 in Intestinal Stem Cell Organoids of Cystic Fibrosis Patients. Cell Stem Cell, 2013, 13, 653-658.	11.1	1,149
58	ER Stress Causes Rapid Loss of Intestinal Epithelial Stemness through Activation of the Unfolded Protein Response. Cell Reports, 2013, 3, 1128-1139.	6.4	234
59	Generation of BAC Transgenic Epithelial Organoids. PLoS ONE, 2013, 8, e76871.	2.5	85
60	A Critical Role for the Wnt Effector Tcf4 in Adult Intestinal Homeostatic Self-Renewal. Molecular and Cellular Biology, 2012, 32, 1918-1927.	2.3	216
61	The Lgr5 intestinal stem cell signature: robust expression of proposed quiescent â€~+4' cell markers. EMBO Journal, 2012, 31, 3079-3091.	7.8	634
62	Tumour suppressor RNF43 is a stem-cell E3 ligase that induces endocytosis of Wnt receptors. Nature, 2012, 488, 665-669.	27.8	791
63	Controlled gene expression in primary Lgr5 organoid cultures. Nature Methods, 2012, 9, 81-83.	19.0	295
64	Notch1 counteracts WNT/ \hat{l}^2 -catenin signaling through chromatin modification in colorectal cancer. Journal of Clinical Investigation, 2012, 122, 3248-3259.	8.2	114
65	Lgr5 homologues associate with Wnt receptors and mediate R-spondin signalling. Nature, 2011, 476, 293-297.	27.8	1,096
66	Survival and Differentiation of Mammary Epithelial Cells in Mammary Gland Development Require Nuclear Retention of Id2 Due to RANK Signaling. Molecular and Cellular Biology, 2011, 31, 4775-4788.	2.3	19
67	The WNT antagonist Dickkopf2 promotes angiogenesis in rodent and human endothelial cells. Journal of Clinical Investigation, 2011, 121, 1882-1893.	8.2	89
68	Expression of an ASCL2 related stem cell signature and IGF2 in colorectal cancer liver metastases with 11p15.5 gain. Gut, 2010, 59, 1236-1244.	12.1	88
69	Essential Role of CR6-interacting Factor 1 (Crif1) in E74-like Factor 3 (ELF3)-mediated Intestinal Development. Journal of Biological Chemistry, 2009, 284, 33634-33641.	3.4	27
70	Notch Signaling Promotes the Generation of EphrinB1-Positive Intestinal Epithelial Cells. Gastroenterology, 2009, 137, 145-155.e3.	1.3	34
71	Inactivation of Notch signaling in the renal collecting duct causes nephrogenic diabetes insipidus in mice. Journal of Clinical Investigation, 2009, 119, 3290-300.	8.2	97
72	A crucial role of WW45 in developing epithelial tissues in the mouse. EMBO Journal, 2008, 27, 1231-1242.	7.8	181

#	Article	IF	Citations
73	Crif1 is a novel transcriptional coactivator of STAT3. EMBO Journal, 2008, 27, 642-653.	7.8	61
74	Mind Bomb 1-Expressing Intermediate Progenitors Generate Notch Signaling to Maintain Radial Glial Cells. Neuron, 2008, 58, 519-531.	8.1	175
75	Mind bomb-1 Is Essential for Intraembryonic Hematopoiesis in the Aortic Endothelium and the Subaortic Patches. Molecular and Cellular Biology, 2008, 28, 4794-4804.	2.3	46
76	Mind bomb 1 in the lymphopoietic niches is essential for T and marginal zone B cell development. Journal of Experimental Medicine, 2008, 205, 2525-2536.	8.5	46
77	Defective Notch activation in microenvironment leads to myeloproliferative disease. Blood, 2008, 112, 4628-4638.	1.4	141
78	Mind bomb 1 in the lymphopoietic niches is essential for T and marginal zone B cell development. Journal of Cell Biology, 2008, 183, i4-i4.	5.2	0
79	An Obligatory Role of Mind Bomb-1 in Notch Signaling of Mammalian Development. PLoS ONE, 2007, 2, e1221.	2.5	105
80	Snx5, as a Mind bomb-binding protein, is expressed in hematopoietic and endothelial precursor cells in zebrafish. FEBS Letters, 2006, 580, 4409-4416.	2.8	21
81	Neuralized-2 Regulates a Notch Ligand in Cooperation with Mind Bomb-1. Journal of Biological Chemistry, 2006, 281, 36391-36400.	3.4	46
82	Receptor Activator of NF-κB Ligand Regulates the Proliferation of Mammary Epithelial Cells via Id2. Molecular and Cellular Biology, 2006, 26, 1002-1013.	2.3	105
83	Mind Bomb-2 Is an E3 Ligase for Notch Ligand. Journal of Biological Chemistry, 2005, 280, 22335-22342.	3.4	93
84	Mind bomb 1 is essential for generating functional Notch ligands to activate Notch. Development (Cambridge), 2005, 132, 3459-3470.	2.5	221
85	Derivation and long-term expansion of human endometrial and decidual organoids Protocol Exchange, 0, , .	0.3	5