Luiz E O C Aragão

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4375497/publications.pdf

Version: 2024-02-01

187 papers 16,074 citations

59
h-index

119 g-index

191 all docs

191 docs citations

191 times ranked

15603 citing authors

#	Article	IF	CITATIONS
1	Drought Sensitivity of the Amazon Rainforest. Science, 2009, 323, 1344-1347.	6.0	1,443
2	Long-term decline of the Amazon carbon sink. Nature, 2015, 519, 344-348.	13.7	796
3	Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 20610-20615.	3.3	751
4	Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. Nature, 2016, 535, 144-147.	13.7	718
5	Drought–mortality relationships for tropical forests. New Phytologist, 2010, 187, 631-646.	3.5	487
6	21st Century drought-related fires counteract the decline of Amazon deforestation carbon emissions. Nature Communications, 2018, 9, 536.	5.8	485
7	Tree height integrated into pantropical forest biomass estimates. Biogeosciences, 2012, 9, 3381-3403.	1.3	373
8	Amazonia as a carbon source linked to deforestation and climate change. Nature, 2021, 595, 388-393.	13.7	371
9	Persistent effects of a severe drought on Amazonian forest canopy. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 565-570.	3.3	334
10	Net primary productivity allocation and cycling of carbon along a tropical forest elevational transect in the Peruvian Andes. Global Change Biology, 2010, 16, 3176-3192.	4.2	333
11	Compositional response of Amazon forests to climate change. Global Change Biology, 2019, 25, 39-56.	4.2	265
12	The Incidence of Fire in Amazonian Forests with Implications for REDD. Science, 2010, 328, 1275-1278.	6.0	254
13	Diversity and carbon storage across the tropical forest biome. Scientific Reports, 2017, 7, 39102.	1.6	251
14	The Brazilian Amazon deforestation rate in 2020 is the greatest of the decade. Nature Ecology and Evolution, 2021, 5, 144-145.	3.4	251
15	Regional and seasonal patterns of litterfall in tropical South America. Biogeosciences, 2010, 7, 43-55.	1.3	250
16	Markedly divergent estimates of <scp>A</scp> mazon forest carbon density from ground plots and satellites. Global Ecology and Biogeography, 2014, 23, 935-946.	2.7	248
17	Above- and below-ground net primary productivity across ten Amazonian forests on contrasting soils. Biogeosciences, 2009, 6, 2759-2778.	1.3	221
18	Hyperdominance in Amazonian forest carbon cycling. Nature Communications, 2015, 6, 6857.	5.8	214

#	Article	IF	CITATIONS
19	Brazil's environmental leadership at risk. Science, 2014, 346, 706-707.	6.0	212
20	Environmental change and the carbon balance of <scp>A</scp> mazonian forests. Biological Reviews, 2014, 89, 913-931.	4.7	208
21	Amazon forest response to repeated droughts. Global Biogeochemical Cycles, 2016, 30, 964-982.	1.9	201
22	Long-term thermal sensitivity of Earth's tropical forests. Science, 2020, 368, 869-874.	6.0	198
23	Remote sensing detection of droughts in Amazonian forest canopies. New Phytologist, 2010, 187, 733-750.	3.5	174
24	Toward an integrated monitoring framework to assess the effects of tropical forest degradation and recovery on carbon stocks and biodiversity. Global Change Biology, 2016, 22, 92-109.	4.2	165
25	Long-term (1990–2019) monitoring of forest cover changes in the humid tropics. Science Advances, 2021, 7, .	4.7	162
26	The linkages between photosynthesis, productivity, growth and biomass in lowland Amazonian forests. Global Change Biology, 2015, 21, 2283-2295.	4.2	146
27	Using the Uâ€net convolutional network to map forest types and disturbance in the Atlantic rainforest with very high resolution images. Remote Sensing in Ecology and Conservation, 2019, 5, 360-375.	2.2	134
28	A social and ecological assessment of tropical land uses at multiple scales: the Sustainable Amazon Network. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120166.	1.8	133
29	Hydrological niche segregation defines forest structure and drought tolerance strategies in a seasonal Amazon forest. Journal of Ecology, 2019, 107, 318-333.	1.9	133
30	Pervasive Rise of Small-scale Deforestation in Amazonia. Scientific Reports, 2018, 8, 1600.	1.6	127
31	The variation of productivity and its allocation along a tropical elevation gradient: a whole carbon budget perspective. New Phytologist, 2017, 214, 1019-1032.	3.5	126
32	Assessment of the MODIS global evapotranspiration algorithm using eddy covariance measurements and hydrological modelling in the Rio Grande basin. Hydrological Sciences Journal, 2013, 58, 1658-1676.	1.2	120
33	Tree species classification in tropical forests using visible to shortwave infrared WorldView-3 images and texture analysis. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 149, 119-131.	4.9	119
34	Shifts in plant respiration and carbon use efficiency at a largeâ€scale drought experiment in the eastern Amazon. New Phytologist, 2010, 187, 608-621.	3.5	118
35	Variation in stem mortality rates determines patterns of aboveâ€ground biomass in <scp>A</scp> mazonian forests: implications for dynamic global vegetation models. Global Change Biology, 2016, 22, 3996-4013.	4.2	116
36	Land use and land cover changes determine the spatial relationship between fire and deforestation in the Brazilian Amazon. Applied Geography, 2012, 34, 239-246.	1.7	114

#	Article	lF	Citations
37	Climate seasonality limits leaf carbon assimilation and wood productivity in tropical forests. Biogeosciences, 2016, 13, 2537-2562.	1.3	108
38	Second rate or a second chance? Assessing biomass and biodiversity recovery in regenerating Amazonian forests. Global Change Biology, 2018, 24, 5680-5694.	4.2	107
39	Factors controlling spatioâ€temporal variation in carbon dioxide efflux from surface litter, roots, and soil organic matter at four rain forest sites in the eastern Amazon. Journal of Geophysical Research, 2007, 112, .	3.3	99
40	Large carbon sink potential of secondary forests in the Brazilian Amazon to mitigate climate change. Nature Communications, 2021, 12, 1785.	5.8	99
41	Carbon-focused conservation may fail to protect the most biodiverse tropical forests. Nature Climate Change, 2018, 8, 744-749.	8.1	98
42	The critical importance of considering fire in REDD+ programs. Biological Conservation, 2012, 154, 1-8.	1.9	95
43	Drought impacts on children's respiratory health in the Brazilian Amazon. Scientific Reports, 2014, 4, 3726.	1.6	92
44	Individual tree crown delineation in a highly diverse tropical forest using very high resolution satellite images. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 145, 362-377.	4.9	91
45	Relationships between phenology, radiation and precipitation in the Amazon region. Global Change Biology, 2011, 17, 2245-2260.	4.2	89
46	Effects of climate and landâ€use change scenarios on fire probability during the 21st century in the Brazilian Amazon. Global Change Biology, 2019, 25, 2931-2946.	4.2	87
47	Integrated terrestrial-freshwater planning doubles conservation of tropical aquatic species. Science, 2020, 370, 117-121.	6.0	87
48	A MODIS-Based Energy Balance to Estimate Evapotranspiration for Clear-Sky Days in Brazilian Tropical Savannas. Remote Sensing, 2012, 4, 703-725.	1.8	82
49	The productivity, metabolism and carbon cycle of two lowland tropical forest plots in south-western Amazonia, Peru. Plant Ecology and Diversity, 2014, 7, 85-105.	1.0	82
50	Persistent collapse of biomass in Amazonian forest edges following deforestation leads to unaccounted carbon losses. Science Advances, 2020, 6, .	4.7	82
51	Vulnerability of Amazonian forests to repeated droughts. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170411.	1.8	80
52	Drought-induced Amazonian wildfires instigate a decadal-scale disruption of forest carbon dynamics. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20180043.	1.8	79
53	Deforestation-Induced Fragmentation Increases Forest Fire Occurrence in Central Brazilian Amazonia. Forests, 2018, 9, 305.	0.9	79
54	The carbon balance of South America: a review of the status, decadal trends and main determinants. Biogeosciences, 2012, 9, 5407-5430.	1.3	78

#	Article	IF	CITATIONS
55	Pre-Columbian earth-builders settled along the entire southern rim of the Amazon. Nature Communications, 2018, 9, 1125.	5.8	74
56	Variations in Amazon forest productivity correlated with foliar nutrients and modelled rates of photosynthetic carbon supply. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 3316-3329.	1.8	71
57	Taking the pulse of Earth's tropical forests using networks of highly distributed plots. Biological Conservation, 2021, 260, 108849.	1.9	71
58	Tree Crown Delineation Algorithm Based on a Convolutional Neural Network. Remote Sensing, 2020, 12, 1288.	1.8	67
59	Quantifying immediate carbon emissions from El Ni $ ilde{A}$ ±o-mediated wildfires in humid tropical forests. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170312.	1.8	64
60	Seasonal and droughtâ€related changes in leaf area profiles depend on height and light environment in an Amazon forest. New Phytologist, 2019, 222, 1284-1297.	3.5	64
61	The rainforest's water pump. Nature, 2012, 489, 217-218.	13.7	63
62	Productivity and carbon allocation in a tropical montane cloud forest in the Peruvian Andes. Plant Ecology and Diversity, 2014, 7, 107-123.	1.0	63
63	Disentangling the contribution of multiple land covers to fireâ€mediated carbon emissions in Amazonia during the 2010 drought. Global Biogeochemical Cycles, 2015, 29, 1739-1753.	1.9	63
64	Climate drivers of the Amazon forest greening. PLoS ONE, 2017, 12, e0180932.	1.1	63
65	Extensive 21stâ€Century Woody Encroachment in South America's Savanna. Geophysical Research Letters, 2019, 46, 6594-6603.	1.5	62
66	Tree mode of death and mortality risk factors across Amazon forests. Nature Communications, 2020, 11, 5515.	5.8	62
67	Net biome production of the Amazon Basin in the 21st century. Global Change Biology, 2010, 16, 2062-2075.	4.2	61
68	A method for extracting plant roots from soil which facilitates rapid sample processing without compromising measurement accuracy. New Phytologist, 2007, 174, 697-703.	3.5	60
69	Seasonal and interannual assessment of cloud cover and atmospheric constituents across the Amazon (2000–2015): Insights for remote sensing and climate analysis. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 145, 309-327.	4.9	60
70	Multiple phosphorus acquisition strategies adopted by fine roots in low-fertility soils in Central Amazonia. Plant and Soil, 2020, 450, 49-63.	1.8	60
71	Hydraulic traits explain differential responses of Amazonian forests to the 2015 El Niñoâ€induced drought. New Phytologist, 2019, 223, 1253-1266.	3.5	58
72	Fine root dynamics along an elevational gradient in tropical Amazonian and Andean forests. Global Biogeochemical Cycles, 2013, 27, 252-264.	1.9	57

#	Article	IF	Citations
73	Toward accounting for ecoclimate teleconnections: intra- and inter-continental consequences of altered energy balance after vegetation change. Landscape Ecology, 2016, 31, 181-194.	1.9	53
74	Ecosystem respiration and net primary productivity after 8–10 years of experimental through-fall reduction in an eastern Amazon forest. Plant Ecology and Diversity, 2014, 7, 7-24.	1.0	52
75	Tracking the impacts of El Ni $ ilde{A}$ \pm o drought and fire in human-modified Amazonian forests. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	51
76	Rapid responses of root traits and productivity to phosphorus and cation additions in a tropical lowland forest in Amazonia. New Phytologist, 2021, 230, 116-128.	3.5	50
77	Climatic and anthropogenic drivers of northern Amazon fires during the 2015–2016 El Niño event. Ecological Applications, 2017, 27, 2514-2527.	1.8	49
78	Drivers of Fire Anomalies in the Brazilian Amazon: Lessons Learned from the 2019 Fire Crisis. Land, 2020, 9, 516.	1.2	48
79	Seasonal production, allocation and cycling of carbon in two mid-elevation tropical montane forest plots in the Peruvian Andes. Plant Ecology and Diversity, 2014, 7, 125-142.	1.0	47
80	Spectral analysis of amazon canopy phenology during the dry season using a tower hyperspectral camera and modis observations. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 131, 52-64.	4.9	47
81	Fire Responses to the 2010 and 2015/2016 Amazonian Droughts. Frontiers in Earth Science, 2019, 7, .	0.8	46
82	Benchmark maps of 33 years of secondary forest age for Brazil. Scientific Data, 2020, 7, 269.	2.4	46
83	Recent deforestation drove the spike in Amazonian fires. Environmental Research Letters, 2020, 15, 121003.	2.2	46
84	The production, allocation and cycling of carbon in a forest on fertile <i>terra preta </i> soil in eastern Amazonia compared with a forest on adjacent infertile soil. Plant Ecology and Diversity, 2014, 7, 41-53.	1.0	44
85	Can MODIS EVI monitor ecosystem productivity in the Amazon rainforest?. Geophysical Research Letters, 2014, 41, 7176-7183.	1.5	42
86	A UAV–lidar system to map Amazonian rainforest and its ancient landscape transformations. International Journal of Remote Sensing, 2017, 38, 2313-2330.	1.3	41
87	Influence of landscape heterogeneity on spatial patterns of wood productivity, wood specific density and above ground biomass in Amazonia. Biogeosciences, 2009, 6, 1883-1902.	1.3	40
88	Impacts of experimentally imposed drought on leaf respiration and morphology in an Amazon rain forest. Functional Ecology, 2010, 24, 524-533.	1.7	39
89	Using learning networks to understand complex systems: a case study of biological, geophysical and social research in the Amazon. Biological Reviews, 2011, 86, 457-474.	4.7	39
90	Conversion from forests to pastures in the Colombian Amazon leads to contrasting soil carbon dynamics depending on land management practices. Global Change Biology, 2016, 22, 3503-3517.	4.2	39

#	Article	IF	Citations
91	Large-scale commodity agriculture exacerbates the climatic impacts of Amazonian deforestation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	38
92	Translating Fire Impacts in Southwestern Amazonia into Economic Costs. Remote Sensing, 2019, 11, 764.	1.8	35
93	Simulating forest productivity along a neotropical elevational transect: temperature variation and carbon use efficiency. Global Change Biology, 2012, 18, 2882-2898.	4.2	34
94	Disruption of hydroecological equilibrium in southwest Amazon mediated by drought. Geophysical Research Letters, 2015, 42, 7546-7553.	1.5	34
95	Increased Wildfire Risk Driven by Climate and Development Interactions in the Bolivian Chiquitania, Southern Amazonia. PLoS ONE, 2016, 11, e0161323.	1.1	34
96	Optimizing Near Real-Time Detection of Deforestation on Tropical Rainforests Using Sentinel-1 Data. Remote Sensing, 2020, 12, 3922.	1.8	33
97	A multi-data assessment of land use and land cover emissions from Brazil during 2000–2019. Environmental Research Letters, 2021, 16, 074004.	2.2	33
98	Are compound leaves an adaptation to seasonal drought or to rapid growth? Evidence from the Amazon rain forest. Global Ecology and Biogeography, 2010, 19, 852-862.	2.7	32
99	Large-scale heterogeneity of Amazonian phenology revealed from 26-year long AVHRR/NDVI time-series. Environmental Research Letters, 2013, 8, 024011.	2.2	32
100	Mapping Atlantic rainforest degradation and regeneration history with indicator species using convolutional network. PLoS ONE, 2020, 15, e0229448.	1.1	32
101	Amazonian forest degradation must be incorporated into the COP26 agenda. Nature Geoscience, 2021, 14, 634-635.	5.4	32
102	Large-scale variations in the dynamics of Amazon forest canopy gaps from airborne lidar data and opportunities for tree mortality estimates. Scientific Reports, 2021, 11, 1388.	1.6	32
103	Estimating the multi-decadal carbon deficit of burned Amazonian forests. Environmental Research Letters, 2020, 15, 114023.	2.2	32
104	Spatial trends in leaf size of Amazonian rainforest trees. Biogeosciences, 2009, 6, 1563-1576.	1.3	31
105	Seeing the woods through the saplings: Using wood density to assess the recovery of humanâ€modified Amazonian forests. Journal of Ecology, 2018, 106, 2190-2203.	1.9	31
106	Quantifying Canopy Tree Loss and Gap Recovery in Tropical Forests under Low-Intensity Logging Using VHR Satellite Imagery and Airborne LiDAR. Remote Sensing, 2019, 11, 817.	1.8	30
107	Consistency of vegetation index seasonality across the Amazon rainforest. International Journal of Applied Earth Observation and Geoinformation, 2016, 52, 42-53.	1.4	29
108	Life cycle of bamboo in the southwestern Amazon and its relation to fire events. Biogeosciences, 2018, 15, 6087-6104.	1.3	29

#	Article	IF	CITATIONS
109	Smoke pollution's impacts in Amazonia. Science, 2020, 369, 634-635.	6.0	28
110	Legacy of Amazonian Dark Earth soils on forest structure and species composition. Global Ecology and Biogeography, 2020, 29, 1458-1473.	2.7	28
111	The Salinity Structure of the Amazon River Plume Drives Spatiotemporal Variation of Oceanic Primary Productivity. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 147-165.	1.3	27
112	Intercomparison of Burned Area Products and Its Implication for Carbon Emission Estimations in the Amazon. Remote Sensing, 2020, 12, 3864.	1.8	27
113	Evaluation of MODIS-based estimates of water-use efficiency in Amazonia. International Journal of Remote Sensing, 2017, 38, 5291-5309.	1.3	26
114	An integrated remote sensing and GIS approach for monitoring areas affected by selective logging: A case study in northern Mato Grosso, Brazilian Amazon. International Journal of Applied Earth Observation and Geoinformation, 2017, 61, 70-80.	1.4	26
115	Spatiotemporal Rainfall Trends in the Brazilian Legal Amazon between the Years 1998 and 2015. Water (Switzerland), 2018, 10, 1220.	1.2	26
116	Spatial distribution and functional significance of leaf lamina shape in Amazonian forest trees. Biogeosciences, 2009, 6, 1577-1590.	1.3	25
117	Post-Fire Changes in Forest Biomass Retrieved by Airborne LiDAR in Amazonia. Remote Sensing, 2016, 8, 839.	1.8	25
118	The extent of 2014 forest fragmentation in the Brazilian Amazon. Regional Environmental Change, 2016, 16, 2485-2490.	1.4	24
119	The Role of the Amazon River Plume on the Intensification of the Hydrological Cycle. Geophysical Research Letters, 2019, 46, 12221-12229.	1.5	24
120	Regional Mapping and Spatial Distribution Analysis of Canopy Palms in an Amazon Forest Using Deep Learning and VHR Images. Remote Sensing, 2020, 12, 2225.	1.8	24
121	Reframing tropical savannization: linking changes in canopy structure to energy balance alterations that impact climate. Ecosphere, 2020, 11, e03231.	1.0	24
122	Amazon methane budget derived from multi-year airborne observations highlights regional variations in emissions. Communications Earth $\&$ Environment, 2021, 2, .	2.6	24
123	Linking land-use and land-cover transitions to their ecological impact in the Amazon. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119 , .	3.3	24
124	Burning in southwestern Brazilian Amazonia, 2016–2019. Journal of Environmental Management, 2021, 286, 112189.	3.8	23
125	Drought-driven wildfire impacts on structure and dynamics in a wet Central Amazonian forest. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20210094.	1.2	23
126	Geometry by Design: Contribution of Lidar to the Understanding of Settlement Patterns of the Mound Villages in SW Amazonia. Journal of Computer Applications in Archaeology, 2020, 3, 151-169.	0.8	23

#	Article	IF	CITATIONS
127	Seasonality of above-ground net primary productivity along an Andean altitudinal transect in Peru. Journal of Tropical Ecology, 2014, 30, 503-519.	0.5	22
128	A successful prediction of the record CO $\langle sub \rangle 2 \langle sub \rangle$ rise associated with the 2015/2016 El NiÃ \pm o. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170301.	1.8	22
129	New insights into the variability of the tropical land carbon cycle from the El Niño of 2015/2016. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170298.	1.8	21
130	Effects of landâ€cover changes on the partitioning of surface energy and water fluxes in <scp>Amazonia</scp> using highâ€resolution satellite imagery. Ecohydrology, 2019, 12, e2126.	1.1	21
131	Detecção de cicatrizes de áreas queimadas baseada no modelo linear de mistura espectral e imagens Ãndice de vegetação utilizando dados multitemporais do sensor MODIS/TERRA no estado do Mato Grosso, Amazônia brasileira. Acta Amazonica, 2005, 35, 445-456.	0.3	20
132	Use of MODIS Sensor Images Combined with Reanalysis Products to Retrieve Net Radiation in Amazonia. Sensors, 2016, 16, 956.	2.1	20
133	A largeâ€scale assessment of plant dispersal mode and seed traits across humanâ€modified Amazonian forests. Journal of Ecology, 2020, 108, 1373-1385.	1.9	20
134	The production, storage, and flow of carbon in Amazonian forests. Geophysical Monograph Series, 2009, , 355-372.	0.1	19
135	Assessing above-ground woody debris dynamics along a gradient of elevation in Amazonian cloud forests in Peru: balancing above-ground inputs and respiration outputs. Plant Ecology and Diversity, 2014, 7, 143-160.	1.0	19
136	Fraction images for monitoring intra-annual phenology of different vegetation physiognomies in Amazonia. International Journal of Remote Sensing, 2011, 32, 387-408.	1.3	18
137	A social and ecological assessment of tropical land uses at multiple scales: the Sustainable Amazon Network. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20130307.	1.8	18
138	The ecosystem dynamics of Amazonian and Andean forests. Plant Ecology and Diversity, 2014, 7, 1-6.	1.0	18
139	Potential land availability for agricultural expansion in the Brazilian Amazon. Land Use Policy, 2015, 49, 35-42.	2.5	17
140	3D Façade Labeling over Complex Scenarios: A Case Study Using Convolutional Neural Network and Structure-From-Motion. Remote Sensing, 2018, 10, 1435.	1.8	17
141	Improving the spatialâ€ŧemporal analysis of Amazonian fires. Global Change Biology, 2021, 27, 469-471.	4.2	17
142	Water table depth modulates productivity and biomass across Amazonian forests. Global Ecology and Biogeography, 2022, 31, 1571-1588.	2.7	17
143	Environmental Controls on the Riverine Export of Dissolved Black Carbon. Global Biogeochemical Cycles, 2019, 33, 849-874.	1.9	16
144	A globally deployable strategy for co-development of adaptation preferences to sea-level rise: the public participation case of Santos, Brazil. Natural Hazards, 2017, 88, 39-53.	1.6	15

#	Article	IF	CITATIONS
145	Vegetation chlorophyll estimates in the Amazon from multi-angle MODIS observations and canopy reflectance model. International Journal of Applied Earth Observation and Geoinformation, 2017, 58, 278-287.	1.4	14
146	Chlorophyll Fluorescence Data Reveals Climate-Related Photosynthesis Seasonality in Amazonian Forests. Remote Sensing, 2017, 9, 1275.	1.8	14
147	Retrieving Secondary Forest Aboveground Biomass from Polarimetric ALOS-2 PALSAR-2 Data in the Brazilian Amazon. Remote Sensing, 2019, 11, 59.	1.8	14
148	Conversion from forests to pastures in the Colombian Amazon leads to differences in dead wood dynamics depending on land management practices. Journal of Environmental Management, 2016, 171, 42-51.	3.8	13
149	Developing Cost-Effective Field Assessments of Carbon Stocks in Human-Modified Tropical Forests. PLoS ONE, 2015, 10, e0133139.	1.1	13
150	Forest Fragmentation and Fires in the Eastern Brazilian Amazon–Maranhão State, Brazil. Fire, 2022, 5, 77.	1.2	13
151	Land availability for sugarcane derived jet-biofuels in São Paulo—Brazil. Land Use Policy, 2018, 70, 256-262.	2.5	12
152	Assessment of Texture Features for Bermudagrass (Cynodon dactylon) Detection in Sugarcane Plantations. Drones, 2019, 3, 36.	2.7	12
153	Relationship between Biomass Burning Emissions and Deforestation in Amazonia over the Last Two Decades. Forests, 2021, 12, 1217.	0.9	12
154	Impacts of Climate Extremes in Brazil: The Development of a Web Platform for Understanding Long-Term Sustainability of Ecosystems and Human Health in Amazonia (PULSE-Brazil). Bulletin of the American Meteorological Society, 2016, 97, 1341-1346.	1.7	11
155	Soil, land use time, and sustainable intensification of agriculture in the Brazilian Cerrado region. Environmental Monitoring and Assessment, 2017, 189, 70.	1.3	11
156	Spatio-temporal variation in dry season determines the Amazonian fire calendar. Environmental Research Letters, 2021, 16, 125009.	2.2	11
157	Drivers of metacommunity structure diverge for common and rare Amazonian tree species. PLoS ONE, 2017, 12, e0188300.	1.1	10
158	Development of a Point-based Method for Map Validation and Confidence Interval Estimation: A Case Study of Burned Areas in Amazonia. Journal of Remote Sensing & GIS, 2017, 06, .	0.3	10
159	Dinâmica das Queimadas no Cerrado do Estado do Maranhão, Nordeste do Brasil. Revista Do Departamento De Geografia, 0, 35, 1-14.	0.0	10
160	Quantifying Post-Fire Changes in the Aboveground Biomass of an Amazonian Forest Based on Field and Remote Sensing Data. Remote Sensing, 2022, 14, 1545.	1.8	10
161	Scienceâ€based planning can support law enforcement actions to curb deforestation in the Brazilian Amazon. Conservation Letters, 2022, 15, .	2.8	10
162	Sources and sinks of trace gases in Amazonia and the Cerrado. Geophysical Monograph Series, 2009, , 337-354.	0.1	9

#	Article	IF	Citations
163	Seasonal changes in plant–water relations influence patterns of leaf display in Miombo woodlands: evidence of water conservative strategies. Tree Physiology, 2019, 39, 104-112.	1.4	9
164	Determination of Region of Influence Obtained by Aircraft Vertical Profiles Using the Density of Trajectories from the HYSPLIT Model. Atmosphere, 2020, 11, 1073.	1.0	9
165	Interannual Variability of Carbon Uptake of Secondary Forests in the Brazilian Amazon (2004â€2014). Global Biogeochemical Cycles, 2020, 34, e2019GB006396.	1.9	9
166	Deforestation and land use and land cover changes in protected areas of the Brazilian Cerrado: impacts on the fire-driven emissions of fine particulate aerosols pollutants. Remote Sensing Letters, 2021, 12, 79-92.	0.6	9
167	The 2020 Brazilian Pantanal fires. Anais Da Academia Brasileira De Ciencias, 2021, 93, e20210077.	0.3	9
168	An alert system for Seasonal Fire probability forecast for South American Protected Areas. Climate Resilience and Sustainability, 2022, 1 , .	0.9	9
169	Fragmentation-Driven Divergent Trends in Burned Area in Amazonia and Cerrado. Frontiers in Forests and Global Change, 2022, 5, .	1.0	8
170	Response to Comment on "The Incidence of Fire in Amazonian Forests with Implications for REDD― Science, 2010, 330, 1627-1627.	6.0	7
171	Fractal properties of forest fires in Amazonia as a basis for modelling pan-tropical burnt area. Biogeosciences, 2014, 11, 1449-1459.	1.3	7
172	Determining a Threshold to Delimit the Amazonian Forests from the Tree Canopy Cover 2000 GFC Data. Sensors, 2019, 19, 5020.	2.1	6
173	Quad-pol advanced land observing satellite/phased array L-band synthetic aperture radar-2 (ALOS/PALSAR-2) data for modelling secondary forest above-ground biomass in the central Brazilian amazon. International Journal of Remote Sensing, 2021, 42, 4985-5009.	1.3	6
174	Increasing bamboo dominance in southwestern Amazon forests following intensification of drought-mediated fires. Forest Ecology and Management, 2021, 490, 119139.	1.4	6
175	Compound impact of land use and extreme climate on the 2020 fire record of the Brazilian Pantanal. Global Ecology and Biogeography, 2022, 31, 1960-1975.	2.7	6
176	The role of stand structure and palm abundance in predicting above-ground biomass at local scale in southern Amazonia. Plant Ecology and Diversity, 2016, 9, 409-420.	1.0	4
177	Fires in Amazonia. Ecological Studies, 2016, , 301-329.	0.4	4
178	Spatial patterns of the canopy stress during 2005 drought in Amazonia., 2007,,.		3
179	Legacy Effects Following Fire on Surface Energy, Water and Carbon Fluxes in Mature Amazonian Forests. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2020JG005833.	1.3	3
180	Diurnal Changes in Leaf Photochemical Reflectance Index in Two Evergreen Forest Canopies. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12, 2236-2243.	2.3	2

#	ARTICLE	lF	CITATIONS
181	RELATOS DE EXPERIÊNCIAS DOS PROJETOS DE PESQUISA MAP-FIRE E ACRE-QUEIMADAS: DIAGNÓSTICO E PERSPECTIVAS DE MITIGAÇÃO ENVOLVENDO A SOCIEDADE PARA REDUÇÃO DO RISCO E DE IMPACTOS ASSOCIADOS A INCÊNDIOS FLORESTAIS. Uáquiri, 2020, 2, 14.	0.0	1
182	Using Fraction Images to Study Natural Land Cover Changes in the Amazon. , 2006, , .		0
183	Spatial - Temporal pattern of forest regeneration in areas deforested in the Eastern Amazon. , 2012, , .		0
184	Gross primary productivity in the northern region of Para state, Brazilian Amazon, from MOD17 data., 2017, , .		0
185	Implications of Diurnal Changes in Leaf PRI on Remote Measurements of Light Use Efficiency. , 2018, , .		0
186	A Simplified 3D Radiative Transfer Approach for the Retrieval of Chemical and Structural Properties of Individual Tree Crowns from Hyperspectral Data. , 2018 , , .		0
187	Near Real-Time Fire Detection and Monitoring in the MATOPIBA Region, Brazil. Remote Sensing, 2022, 14, 3141.	1.8	0